Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of magnetic flux density and cooling rate on orientation behavior of Tb0.27Dy0.73Fe1.95 alloy during solidification process

Gao Peng-Fei Liu Tie Chai Shao-Wei Dong Meng Wang Qiang

Citation:

Influence of magnetic flux density and cooling rate on orientation behavior of Tb0.27Dy0.73Fe1.95 alloy during solidification process

Gao Peng-Fei, Liu Tie, Chai Shao-Wei, Dong Meng, Wang Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The rare-earth giant magnetostrictive material Tb0.27Dy0.73Fe1.95 is one of the most important functional magnetic materials. Their superior properties include high saturation magnetostrictive coefficient at room temperature, high electromechanical coupling coefficients, high output power, fast response, high energy density, and non-contact drive. Thus, they can be used to build sensors, precision machinery, magnetomechanical transducers, and adaptive vibration-control systems. In this material, the magnetic phase (Tb, Dy)Fe2 has a typical MgCu2-type cubic Laves phase structure and exhibits different magnetostrictive properties along different crystal orientations. The 111 direction of this phase is the easy magnetization axis, along which the linear magnetostriction is higher than other directions. Thus, researchers have focused on preparing (Tb, Dy)Fe2 with a crystallographic orientation along or close to the 111 direction. Generally, the directional solidification method is used to prepare the Tb0.27Dy0.73Fe1.95 alloy. However, a crystal orientated along the 110 or 112 direction is always obtained and both of these directions require a high external magnetic field for improved magnetostrictive performance. The 111 preferred growth orientation can be acquired using seed crystal technology. However, the relatively low growth velocity can cause the appearance of the linear (Tb, Dy)Fe3 phase which induces a high brittleness of the material. Therefore, new methods to prepare Tb0.27Dy0.73Fe1.95 products with high 111 orientation at higher growth velocity are required. In this paper, we solidify the Tb0.27Dy0.73Fe1.95 alloys under various high magnetic field and cooling rate conditions. We study the effects of the magnetic flux density and cooling rate on the crystal orientation of the (Tb, Dy)Fe2 phase and the magnetization behavior of the alloys. It is found that after field-treated solidification, a high 111 orientation of (Tb, Dy)Fe2 along the magnetic field direction can be produced. As a consequence, the magnetostriction without applying stress remarkably increases. By increasing the magnetic flux density applied during the solidification of the Tb0.27Dy0.73Fe1.95 alloys, the 111 orientation of (Tb, Dy)Fe2 could be obtained at higher cooling rates. Ranging from 4 T to 10 T, with increasing cooling rate the magnetic flux density, at which the 111 or 110 orientation of (Tb, Dy)Fe2 occurs, increases or decreases, respectively. The saturated magnetization of the alloys increases with increasing cooling rate. The application of the magnetic fields does not affect the saturated magnetization.
      Corresponding author: Liu Tie, liutie@epm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51425401, 51574073, 51174056), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. N140901001, N130302005).
    [1]

    Clark A E, Belson H 1972 Phys. Rev. B 5 3642

    [2]

    Dhilsha R, Rajeshwari P M, Rajendran V 2005 Def. Sci. J. 55 13

    [3]

    Xu L H, Jiang C B, Xu H B 2006 Appl. Phys. Lett. 89 192507

    [4]

    Zhang C S, Ma T Y, Yan M 2011 Acta Phys. Sin. 60 037505 (in Chinese) [张昌盛, 马天宇, 严密 2011 60 037505]

    [5]

    Ren W J, Zhang Z D 2013 Chin. Phys. B 22 077507

    [6]

    Yan B P, Tang Z F, L F Z, Yang K J, Zhang C M, Li L Y 2014 Chin. Phys. B 23 127504

    [7]

    Wang K, Liu T, Gao P F, Wang Q, Liu Y, He J C 2015 Chin. Phys. Lett. 32 37502

    [8]

    Gao P F, Liu T, Dong M, Yuan Y, Wang K, Wang Q 2016 Funct. Mater. Lett. 9 1650003

    [9]

    Jile D C 1994 J. Phys. D: Appl. Phys. 27 1

    [10]

    Zhao Y, Jiang C B, Zhang H, Xu H B 2003 J. Alloy. Compd. 354 263

    [11]

    Palit M, Banumathy S, Singh A K, Pandian S, Chattopadhyay K 2011 Intermetallics 19 357

    [12]

    Bai X B, Jiang C B 2010 J. Rare Earth 28 104

    [13]

    Kang D Z, Liu J H, Jiang C B, Xu H B 2015 J. Alloy. Compd. 621 331

    [14]

    Wu G H, Zhao X G, Wang J H, Li J Y, Jia K C, Zhan W S 1997 Appl. Phys. Lett. 67 2005

    [15]

    Palit M, Arout Chelvane J, Pandian S, Manivel Raja M, Chandrasekaran V 2009 Mater. Charact. 60 40

    [16]

    Meng H, Zhang T L, Jiang C B, Xu H B 2010 Appl. Phys. Lett. 96 102501

    [17]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Magn. Magn. Mater. 174 100

    [18]

    Gao A, Wang Q, Wang C J, Liu T, Zhang C, He J C 2008 Acta Phys. Sin. 57 767 (in Chinese) [高翱, 王强, 王春江, 刘铁, 张超, 赫冀成 2008 57 767]

    [19]

    Liu T, Wang Q, Zhang C, Gao A, Li D G, He J C 2009 J. Mater. Res. 24 2321

    [20]

    Liu T, Liu Y, Wang Q, Iwai K, Gao P F, He J C 2013 J. Phys. D: Appl. Phys. 46 125005

    [21]

    Liu Y, Wang Q, Kazuhiko I, Yuan Y, Liu T, He J C 2014 J. Magn. Magn. Mater. 357 18

    [22]

    Rango P D, Lees M R, Lejay P, Sulpice A, Tournier R, Ingold M, Geumi P, Pernet M 1991 Nature 349 770

    [23]

    Wang Q, Liu T, Wang K, Gao P F, Liu Y, He J C 2014 ISIJ Int. 54 516

    [24]

    Yuan Y, Li Y L, Wang Q, Liu T, Gao P F, He J C 2013 Acta Phys. Sin. 62 208106 (in Chinese) [苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成 2013 62 208106]

    [25]

    Liu T, Wang Q, Gao P F, Wang K, Wang K, Zhang T A, He J C 2014 IEEE Trans. Magn. 50 2505603

    [26]

    Asai S 2007 ISIJ Int. 47 519

    [27]

    Wu C Y, Li S, Sassa K, Chino Y, Hattori K, Asai S 2005 Mater. Trans. 46 1311

    [28]

    Mei W, Toshimisu O, Takateru U 1997 J. Alloy. Compd. 248 132

    [29]

    Arif S K, Bunbury D S P, Bowden G J 1975 J. Phys. F: Met. Phys. 5 1785

    [30]

    Gao P F, Wang Q, Liu T, Liu Y, Niu S X, He J C 2015 IEEE Trans. Magn. 51 2500706

  • [1]

    Clark A E, Belson H 1972 Phys. Rev. B 5 3642

    [2]

    Dhilsha R, Rajeshwari P M, Rajendran V 2005 Def. Sci. J. 55 13

    [3]

    Xu L H, Jiang C B, Xu H B 2006 Appl. Phys. Lett. 89 192507

    [4]

    Zhang C S, Ma T Y, Yan M 2011 Acta Phys. Sin. 60 037505 (in Chinese) [张昌盛, 马天宇, 严密 2011 60 037505]

    [5]

    Ren W J, Zhang Z D 2013 Chin. Phys. B 22 077507

    [6]

    Yan B P, Tang Z F, L F Z, Yang K J, Zhang C M, Li L Y 2014 Chin. Phys. B 23 127504

    [7]

    Wang K, Liu T, Gao P F, Wang Q, Liu Y, He J C 2015 Chin. Phys. Lett. 32 37502

    [8]

    Gao P F, Liu T, Dong M, Yuan Y, Wang K, Wang Q 2016 Funct. Mater. Lett. 9 1650003

    [9]

    Jile D C 1994 J. Phys. D: Appl. Phys. 27 1

    [10]

    Zhao Y, Jiang C B, Zhang H, Xu H B 2003 J. Alloy. Compd. 354 263

    [11]

    Palit M, Banumathy S, Singh A K, Pandian S, Chattopadhyay K 2011 Intermetallics 19 357

    [12]

    Bai X B, Jiang C B 2010 J. Rare Earth 28 104

    [13]

    Kang D Z, Liu J H, Jiang C B, Xu H B 2015 J. Alloy. Compd. 621 331

    [14]

    Wu G H, Zhao X G, Wang J H, Li J Y, Jia K C, Zhan W S 1997 Appl. Phys. Lett. 67 2005

    [15]

    Palit M, Arout Chelvane J, Pandian S, Manivel Raja M, Chandrasekaran V 2009 Mater. Charact. 60 40

    [16]

    Meng H, Zhang T L, Jiang C B, Xu H B 2010 Appl. Phys. Lett. 96 102501

    [17]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Magn. Magn. Mater. 174 100

    [18]

    Gao A, Wang Q, Wang C J, Liu T, Zhang C, He J C 2008 Acta Phys. Sin. 57 767 (in Chinese) [高翱, 王强, 王春江, 刘铁, 张超, 赫冀成 2008 57 767]

    [19]

    Liu T, Wang Q, Zhang C, Gao A, Li D G, He J C 2009 J. Mater. Res. 24 2321

    [20]

    Liu T, Liu Y, Wang Q, Iwai K, Gao P F, He J C 2013 J. Phys. D: Appl. Phys. 46 125005

    [21]

    Liu Y, Wang Q, Kazuhiko I, Yuan Y, Liu T, He J C 2014 J. Magn. Magn. Mater. 357 18

    [22]

    Rango P D, Lees M R, Lejay P, Sulpice A, Tournier R, Ingold M, Geumi P, Pernet M 1991 Nature 349 770

    [23]

    Wang Q, Liu T, Wang K, Gao P F, Liu Y, He J C 2014 ISIJ Int. 54 516

    [24]

    Yuan Y, Li Y L, Wang Q, Liu T, Gao P F, He J C 2013 Acta Phys. Sin. 62 208106 (in Chinese) [苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成 2013 62 208106]

    [25]

    Liu T, Wang Q, Gao P F, Wang K, Wang K, Zhang T A, He J C 2014 IEEE Trans. Magn. 50 2505603

    [26]

    Asai S 2007 ISIJ Int. 47 519

    [27]

    Wu C Y, Li S, Sassa K, Chino Y, Hattori K, Asai S 2005 Mater. Trans. 46 1311

    [28]

    Mei W, Toshimisu O, Takateru U 1997 J. Alloy. Compd. 248 132

    [29]

    Arif S K, Bunbury D S P, Bowden G J 1975 J. Phys. F: Met. Phys. 5 1785

    [30]

    Gao P F, Wang Q, Liu T, Liu Y, Niu S X, He J C 2015 IEEE Trans. Magn. 51 2500706

  • [1] Ren Li-Qing, Yang Qiang, Ji Chao-Ran, Chi Jiao, Hu Yun, Wei Ying-Chun, Xu Jin-You. Spatial orientation of CdS nanowires based on second harmonic generation spectroscopy and microscopic imaging. Acta Physica Sinica, 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [2] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] Su Xu-Kun, Leng Yong-Gang, Zhang Yu-Yang, Fan Sheng-Bo. Study on the model of space magnetic induction of a bi-pole magnet. Acta Physica Sinica, 2021, 70(16): 167501. doi: 10.7498/aps.70.20210448
    [4] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] Deng Dong-Ge, Zuo Su, Wu Xin-Jun. A method of characterizing axial stress in ferromagnetic members using superficial magnetic flux density obtained from static magnetization by permanent magnet. Acta Physica Sinica, 2018, 67(17): 178103. doi: 10.7498/aps.67.20180560
    [6] Wang Xian-Bin, Lin Xin, Wang Li-Lin, Bai Bei-Bei, Wang Meng, Huang Wei-Dong. Effect of crystallographic orientation on dendrite growth in directional solidification. Acta Physica Sinica, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [7] Bian Wen-Hua, Dai Fu-Ping, Wang Wei-Li, Zhao Yu-Long. Formation mechanism of ternary NiAl-Mo eutectic alloy under quenching condition. Acta Physica Sinica, 2013, 62(4): 048102. doi: 10.7498/aps.62.048102
    [8] Wang Li-Lin, Wang Xian-Bin, Wang Hong-Yan, Lin Xin, Huang Wei-Dong. Effect of crystallographic orientation on instability behavior of planar interface in directional solidification. Acta Physica Sinica, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [9] Guan Ren-Guo, Zhao Zhan-Yong, Huang Hong-Qian, Lian Chao, Chao Run-Ze, Liu Chun-Ming. Theoretical study on boundary distributions and flow-metal heat transfer during melt treatment by cooling sloping plate. Acta Physica Sinica, 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [10] Zheng Nai-Chao, Liu Hai-Rong, Liu Rang-Su, Liang Yong-Chao, Mo Yun-Fei, Zhou Qun-Yi, Tian Ze-An. Effects of cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy. Acta Physica Sinica, 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [11] Zhang Chang-Sheng, Ma Tian-Yu, Yan Mi. Magnetostriction-jump effect in〈110〉 oriented Tb0.3Dy0.7Fe1.95 crystal after non-coaxial field annealing. Acta Physica Sinica, 2011, 60(3): 037505. doi: 10.7498/aps.60.037505
    [12] Li Chuan, Liu Jing-Hua, Chen Li-Biao, Jiang Cheng-Bao, Xu Hui-Bin. Crytallographic orientation and magmetostriction of FeGa crystals. Acta Physica Sinica, 2011, 60(9): 097505. doi: 10.7498/aps.60.097505
    [13] Zheng Xiao-Ping, Zhang Pei-Feng, Li Fa-Shen, Hao Yuan. Magnetism, magetostriction, and M?ssbauer effect studies of Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95 alloys. Acta Physica Sinica, 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [14] Wang Hua-Tao, Qin Zhao-Dong, Ni Yu-Shan, Zhang Wen. Multi-scale simulation of the deformation in nano-indentation under different crystal orientations. Acta Physica Sinica, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [15] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys. Acta Physica Sinica, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [16] Li Jun-Jie, Wang Jin-Cheng, Xu Quan, Yang Gen-Cang. Effect of foreign particles on the dendritic growth in phase-field theory. Acta Physica Sinica, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [17] The surface mapping and crystal orientation of body-centered cubic thin metal tungsten films of different thickness. Acta Physica Sinica, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [18] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Hao Yuan. Structure, spin reorientation and M?ssbauer spectra of Tb0.3Dy0.7(Fe0.9T0.1)1.95 alloys. Acta Physica Sinica, 2006, 55(2): 879-883. doi: 10.7498/aps.55.879
    [19] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang, Li Fa-Shen, Cheng Zhao-Hua, Shen Bao-Gen. Spin reorientation and M?ssbauer effect studies on Tb0.3Dy0.7(Fe1-xAlx)1.95 alloys. Acta Physica Sinica, 2005, 54(2): 944-948. doi: 10.7498/aps.54.944
    [20] Zheng Xiao-Peng, Xue De-Sheng, Li Fa-Shen, Cheng Shao-Hua, Wu Guang-Heng, Shen Bao-Gen. . Acta Physica Sinica, 2002, 51(4): 922-927. doi: 10.7498/aps.51.922
Metrics
  • Abstract views:  6300
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2015
  • Accepted Date:  22 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map