搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子动力学模拟冷却速率对非晶合金结构与变形行为的影响

周边 杨亮

引用本文:
Citation:

分子动力学模拟冷却速率对非晶合金结构与变形行为的影响

周边, 杨亮

Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses

Zhou Bian, Yang Liang
PDF
HTML
导出引用
  • 非晶合金因具有独特的无序结构、优异或独特的各种性能以及良好的应用前景, 而受到专家学者的广泛关注. 其中, 制备过程中的冷却速率对非晶的结构与性能起着非常重要的调控作用. 本文采用分子动力学的模拟方法, 分别以4种冷却速率获得相同尺寸的Zr48Cu45Al7三元非晶合金的制备态原子结构模型, 并模拟了各制备态模型的压缩变形过程. 在此基础上系统地研究冷却速率对非晶微观结构及其变形行为的影响. 研究表明: 在施加大冷却速率时, 非晶合金保留更多高温液态的结构特征, 如五次对称性低的团簇数量较多, 原子堆积较为松散, 自由体积含量更多, 并存在更多的“类液区”. 上述大冷却速率所对应的结构特征导致了非晶发生变形时, 屈服强度降低, 表现出软化行为, 同时降低了剪切带形成与发生局域化变形的概率, 从而提高了非晶的塑性.
    Since the discovery of the first metallic glass (MG) in 1960, vast efforts have been devoted to the understanding of the structural mechanisms of unique properties, in particular, mechanical properties in MGs, which is helpful for the applications of such novel alloys. As is well known, the cooling rate during the quenching as well as the sample size, significantly affects the mechanical properties in MGs. In order to study the effect of cooling rate on microstructure and deformation behavior in MG by excluding the size effect, Zr48Cu45Al7 ternary composition with good glass-forming ability is selected as a research prototype in this work. The classical molecular dynamics simulation is utilized to construct four structural MG models with the same size under different cooling rates, and the uniaxial compressive deformation for each model is also simulated. It is found that an MG model prepared at a lower cooling rate has a higher yield strength and is more likely to form shear bands that lead the strain to be localized, resulting in a lower plasticity. The Voronoi tessellation, together with atomic packing efficiency and free volume algorithms that have been designed by ourselves, is used to analyze the four as-constructed models and high-temperature liquid model. It is found that the as-constructed model, which is prepared by quenching metallic melt at a higher cooling rate, can preserve more structural characteristics of the high-temperature liquid. In other words, the higher cooling rate leads to more clusters with relatively low five-fold symmetry, loose atomic packing and large fraction of free volumes in MG. By calculating the distribution of the free volumes, a new computational approach to detecting liquid-like regions in MG models is adopted. It is found that there are more liquid-like regions in the as-constructed model which is prepared by quenching metallic melt at a relatively high cooling rate. This should be the structural origin of the effect of cooling rate on the deformation behavior, in particular, the yield strength and the plasticity. This work provides an understanding of how the cooling rate during quenching affects the microstructure and deformation behavior, and will shed light on the development of new MGs with relatively large plasticity.
      通信作者: 杨亮, yangliang@nuaa.edu.cn
    • 基金项目: 国家级-Zr 基非晶合金耐中子辐照性的微观机理研究(51471088)
      Corresponding author: Yang Liang, yangliang@nuaa.edu.cn
    [1]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015 Mater. Des. 86 703Google Scholar

    [2]

    Reichel L, Schultz L, Pohl D, Oswald S, Fahler S, Werwinski M, Edstrom A, Delczeg-Czirjak E K, Rusz J 2015 J. Phys-Condens Mat. 27 476002Google Scholar

    [3]

    Zhang C, Guo R Q, Yang Y, Wu Y, Liu L 2011 Electrochim. Acta 56 6380Google Scholar

    [4]

    Schuh C, Hufnagel T, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [5]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng., R 44 45Google Scholar

    [6]

    Yang L, Guo G Q, Chen L Y, LaQua B, Jiang J Z 2014 Intermetallics 44 94Google Scholar

    [7]

    Liu Y, Bei H, Liu C T, George E P 2007 Appl. Phys. Lett. 90 071909Google Scholar

    [8]

    Liu Z Y, Yang Y, Guo S, Liu X J, Lu J, Liu Y H, Liu C T 2011 J. Alloys Compd. 509 3269Google Scholar

    [9]

    Hu Y, Yan H H, Yan Z J, Wang X G 2018 Aip. Adv. 8 105002Google Scholar

    [10]

    Li C, Kou S, Zhao Y, Liu G, Ding Y 2012 Prog. Nat. Sci. 22 21Google Scholar

    [11]

    Yokoyama Y, Yamano K, Fukaura K, Sunada H, Inoue A 2001 Scr. Mater. 44 1529Google Scholar

    [12]

    Conner R D, Johnson W L, Paton N E, Nix W D 2003 J. Appl. Phys. 94 904Google Scholar

    [13]

    Lin X H, Johnson W L 1995 J. Appl. Phys. 78 6514Google Scholar

    [14]

    Liao W, Zhao Y, He J, Zhang Y 2013 J. Alloys Compd. 555 357Google Scholar

    [15]

    Jiang W H, Liu F X, Wang Y D, Zhang H F, Choo H, Liaw P K 2006 Mat. Sci. Eng., A 430 350Google Scholar

    [16]

    Huang Y J, Shen J, Sun J F 2007 Appl. Phys. Lett. 90 081919Google Scholar

    [17]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scr. Mater. 63 879Google Scholar

    [18]

    郭古青, 杨亮, 张国庆 2011 60 016103Google Scholar

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103Google Scholar

    [19]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501Google Scholar

    [20]

    Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404Google Scholar

    [21]

    Cheng Y Q, Cao A J, Sheng H W, Ma E 2008 Acta Mater. 56 5263Google Scholar

    [22]

    Park K W, Fleury E, Seok H K, Kim Y C 2011 Intermetallics 19 1168Google Scholar

    [23]

    Ghidelli M, Idrissi H, Gravier S, Blandin J J, Raskin J P, Schryvers D, Pardoen T 2017 Acta Mater. 131 246Google Scholar

    [24]

    Lewandowski J J, Greer A L 2006 Nat. Mater. 5 15Google Scholar

    [25]

    Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M, Liu R P 2018 Mater. Des. 158 248Google Scholar

    [26]

    汪卫华 2014 中国科学: 物理学 力学 天文学 44 396Google Scholar

    Wang W H 2014 Sci. China: Phys. Mech. Astron. 44 396Google Scholar

    [27]

    管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 66 176112Google Scholar

    Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112Google Scholar

    [28]

    Wang W H 2012 J. Appl. Phys. 111 123519Google Scholar

    [29]

    Miracle D B 2004 Nat. Mater. 3 697Google Scholar

    [30]

    Cheng Y Q, Ma E 2011 Prog. Mater Sci. 56 379Google Scholar

    [31]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503Google Scholar

    [32]

    郭古青, 吴诗阳, 蔡光博, 杨亮 2016 65 096402Google Scholar

    Guo G Q, Wu S Y, Cai G B, Yang L 2016 Acta Phys. Sin. 65 096402Google Scholar

    [33]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [34]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502Google Scholar

    [35]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar

    [36]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120Google Scholar

    [37]

    Turnbull D, Cohen M H 1970 J. Chem. Phys. 52 3038Google Scholar

    [38]

    Sietsma J, Thijsse B J 1995 Phys. Rev. B 52 3248Google Scholar

    [39]

    Zhang Y, Hahn H 2011 J. Non-Cryst. Solids 357 1420Google Scholar

    [40]

    Li F, Liu X J, Hou H Y, Chen G, Chen G L, Li M 2009 Intermetallics 17 98Google Scholar

    [41]

    Liao B, Wu S Y, Yang L 2017 Aip Adv 7 105101Google Scholar

    [42]

    Qi L, Zhang H F, Hu Z Q 2004 Intermetallics 12 1191Google Scholar

    [43]

    Wakeda M, Shibutani Y, Ogata S, Park J 2007 Intermetallics 15 139Google Scholar

    [44]

    Da W, Wang P W, Wang Y F, Li M F, Yang L 2018 Materials 12 98Google Scholar

  • 图 1  不同冷速制备态模型的(a)结构因子S(Q)和(b)对分布函数G(r)

    Fig. 1.  Structural data of as-constructed models with different cooling rates, including: (a) The normalized structural factor S(Q); (b) the total pair distribution function, G(r).

    图 2  应变速率为1 × 108 /s时, 不同冷却速率Zr48Cu45Al7非晶合金模型的压缩应力应变曲线

    Fig. 2.  Compressive stress-strain curves of Zr48Cu45Al7 amorphous alloy models prepared using different cooling rates at the strain rate of 1 × 108 /s.

    图 3  压缩变形过程中应变量为20%时, 不同冷却速率获得的Zr48Cu45Al7非晶合金模型的原子剪切应变图 (a) 1010 K/s; (b) 1011 K/s; (c) 1012 K/s; (d) 1013 K/s

    Fig. 3.  Distributions of atomic local shear strains of Zr48Cu45Al7 amorphous alloy models at macrostrain of 20% during the compressive deformation, including those prepared with different cooling rates: (a) 1010 K/s; (b) 1011 K/s; (c) 1012 K/s; (d) 1013 K/s.

    图 4  Voronoi团簇类型及含量分布 (a) 不同冷却速率的Zr48Cu45Al7非晶合金制备态模型(列出了含量超过4%的Voronoi团簇); (b) 2000 K时Zr48Cu45Al7液体结构模型(列出了含量较多与五次对称性较高的几种Voronoi团簇)

    Fig. 4.  Distributions of major Voronoi clusters in (a) The as-constructed models of Zr48Cu45Al7 amorphous alloy with different cooling rate (Note only Voronoi clusters possessing a weight larger than 4% are selected), and (b) a liquid model of Zr48Cu45Al7 with a temperature of 2000 K (Note only Voronoi clusters with highest fractions and relatively higher five-fold symmetry are selected).

    图 5  LFV原子分布图 (a) 2000 K液体模型; (b) 1010 K/s制备态模型; (c) 1011 K/s制备态模型; (d) 1012 K/s制备态模型; (e) 1013 K/s制备态模型

    Fig. 5.  3 D distributions of LFV atoms in (a) a liquid model at 2000 K, and those as-constructed models prepared by using with cooling rates of (b) 1010 K/s, (c) 1011 K/s, (d) 1012 K/s, and (e) 1013 K/s.

    表 1  不同冷速制备态模型与2000 K液体模型的原子堆积效率η

    Table 1.  The atomic packing efficiencies, η, in the as-constructed models prepared by using different cooling rates and a liquid model with a temperature of 2000 K.

    1010 K/s1011 K/s1012 K/s1013 K/s2000 K
    η/%70.54770.47370.39970.32063.983
    下载: 导出CSV

    表 2  Zr48Cu45Al7非晶合金不同冷却速制备态模型和液体模型的自由体积大小与自由体积占总体积的比值

    Table 2.  The total free volume and fraction of free volume in the as-constructed models prepared by using different cooling rates and a liquid model with a temperature of 2000 K.

    1010 K/s1011 K/s1012 K/s1013 K/s2000 K
    总自由体积/Å11117.0511430.3411758.2412052.5742825.75
    自由体积占比/%3.4403.5323.6283.71512.059
    下载: 导出CSV

    表 3  不同冷速制备态模型的LFV原子数

    Table 3.  The number of LFV atoms in the as-constructed models prepared by using different cooling rates.

    1010 K/s1011 K/s1012 K/s1013 K/s
    LFV原子数/个317404437485
    下载: 导出CSV
    Baidu
  • [1]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015 Mater. Des. 86 703Google Scholar

    [2]

    Reichel L, Schultz L, Pohl D, Oswald S, Fahler S, Werwinski M, Edstrom A, Delczeg-Czirjak E K, Rusz J 2015 J. Phys-Condens Mat. 27 476002Google Scholar

    [3]

    Zhang C, Guo R Q, Yang Y, Wu Y, Liu L 2011 Electrochim. Acta 56 6380Google Scholar

    [4]

    Schuh C, Hufnagel T, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [5]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng., R 44 45Google Scholar

    [6]

    Yang L, Guo G Q, Chen L Y, LaQua B, Jiang J Z 2014 Intermetallics 44 94Google Scholar

    [7]

    Liu Y, Bei H, Liu C T, George E P 2007 Appl. Phys. Lett. 90 071909Google Scholar

    [8]

    Liu Z Y, Yang Y, Guo S, Liu X J, Lu J, Liu Y H, Liu C T 2011 J. Alloys Compd. 509 3269Google Scholar

    [9]

    Hu Y, Yan H H, Yan Z J, Wang X G 2018 Aip. Adv. 8 105002Google Scholar

    [10]

    Li C, Kou S, Zhao Y, Liu G, Ding Y 2012 Prog. Nat. Sci. 22 21Google Scholar

    [11]

    Yokoyama Y, Yamano K, Fukaura K, Sunada H, Inoue A 2001 Scr. Mater. 44 1529Google Scholar

    [12]

    Conner R D, Johnson W L, Paton N E, Nix W D 2003 J. Appl. Phys. 94 904Google Scholar

    [13]

    Lin X H, Johnson W L 1995 J. Appl. Phys. 78 6514Google Scholar

    [14]

    Liao W, Zhao Y, He J, Zhang Y 2013 J. Alloys Compd. 555 357Google Scholar

    [15]

    Jiang W H, Liu F X, Wang Y D, Zhang H F, Choo H, Liaw P K 2006 Mat. Sci. Eng., A 430 350Google Scholar

    [16]

    Huang Y J, Shen J, Sun J F 2007 Appl. Phys. Lett. 90 081919Google Scholar

    [17]

    Yang L, Guo G Q, Chen L Y, Wei S H, Jiang J Z, Wang X D 2010 Scr. Mater. 63 879Google Scholar

    [18]

    郭古青, 杨亮, 张国庆 2011 60 016103Google Scholar

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103Google Scholar

    [19]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501Google Scholar

    [20]

    Zeng Q, Sheng H, Ding Y, Wang L, Yang W, Jiang J Z, Mao W L, Mao H K 2011 Science 332 1404Google Scholar

    [21]

    Cheng Y Q, Cao A J, Sheng H W, Ma E 2008 Acta Mater. 56 5263Google Scholar

    [22]

    Park K W, Fleury E, Seok H K, Kim Y C 2011 Intermetallics 19 1168Google Scholar

    [23]

    Ghidelli M, Idrissi H, Gravier S, Blandin J J, Raskin J P, Schryvers D, Pardoen T 2017 Acta Mater. 131 246Google Scholar

    [24]

    Lewandowski J J, Greer A L 2006 Nat. Mater. 5 15Google Scholar

    [25]

    Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M, Liu R P 2018 Mater. Des. 158 248Google Scholar

    [26]

    汪卫华 2014 中国科学: 物理学 力学 天文学 44 396Google Scholar

    Wang W H 2014 Sci. China: Phys. Mech. Astron. 44 396Google Scholar

    [27]

    管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 66 176112Google Scholar

    Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112Google Scholar

    [28]

    Wang W H 2012 J. Appl. Phys. 111 123519Google Scholar

    [29]

    Miracle D B 2004 Nat. Mater. 3 697Google Scholar

    [30]

    Cheng Y Q, Ma E 2011 Prog. Mater Sci. 56 379Google Scholar

    [31]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503Google Scholar

    [32]

    郭古青, 吴诗阳, 蔡光博, 杨亮 2016 65 096402Google Scholar

    Guo G Q, Wu S Y, Cai G B, Yang L 2016 Acta Phys. Sin. 65 096402Google Scholar

    [33]

    李茂枝 2017 66 176107Google Scholar

    Li M Z 2017 Acta Phys. Sin. 66 176107Google Scholar

    [34]

    Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G, Jiang J Z 2012 Phys. Rev. Lett. 109 105502Google Scholar

    [35]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar

    [36]

    Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120Google Scholar

    [37]

    Turnbull D, Cohen M H 1970 J. Chem. Phys. 52 3038Google Scholar

    [38]

    Sietsma J, Thijsse B J 1995 Phys. Rev. B 52 3248Google Scholar

    [39]

    Zhang Y, Hahn H 2011 J. Non-Cryst. Solids 357 1420Google Scholar

    [40]

    Li F, Liu X J, Hou H Y, Chen G, Chen G L, Li M 2009 Intermetallics 17 98Google Scholar

    [41]

    Liao B, Wu S Y, Yang L 2017 Aip Adv 7 105101Google Scholar

    [42]

    Qi L, Zhang H F, Hu Z Q 2004 Intermetallics 12 1191Google Scholar

    [43]

    Wakeda M, Shibutani Y, Ogata S, Park J 2007 Intermetallics 15 139Google Scholar

    [44]

    Da W, Wang P W, Wang Y F, Li M F, Yang L 2018 Materials 12 98Google Scholar

  • [1] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波. 钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律.  , 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性.  , 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [3] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [4] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制.  , 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [5] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响.  , 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [6] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学.  , 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [7] 孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华. 非晶材料与物理近期研究进展.  , 2018, 67(12): 126101. doi: 10.7498/aps.67.20180681
    [8] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能.  , 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [9] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀.  , 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [10] 柳延辉. 非晶合金的高通量制备与表征.  , 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [11] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学.  , 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [13] 高鹏飞, 刘铁, 柴少伟, 董蒙, 王强. 磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响.  , 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [14] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究.  , 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [15] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究.  , 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [16] 郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安. 冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响.  , 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [17] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟.  , 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [18] 陆曹卫, 卢志超, 孙 克, 李德仁, 周少雄. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究.  , 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [19] 易学华, 刘让苏, 田泽安, 侯兆阳, 王 鑫, 周群益. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究.  , 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [20] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究.  , 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
计量
  • 文章访问数:  9660
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-24
  • 修回日期:  2020-01-03
  • 刊出日期:  2020-06-05

/

返回文章
返回
Baidu
map