-
Recently proposed crystalline/amorphous dual-phase high-entropy alloy is an effective strategy to obtain high-entropy, high-strength and high-toughness alloys. And the relative plastic deformation mechanism is dependent on the size of component phases. The effect of component phase size on the plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloy is investigated by molecular dynamics simulation. The results indicate that the size of amorphous phase has a significant effect on the mechanical behavior and plastic deformation mechanism of high entropy alloy. For the sample with small thickness of amorphous phase, the plastic deformation is dominated by dislocation slip and phase transformation of face-centered-cubic structure to hexagonal-close-packed structure. Especially, the deformation twins and Lomer-Cottrell locks are observed in the sample with amorphous layer spacing of 1 nm. When the thickness of the amorphous layer is moderate, the plastic deformation of the dual-phase high-entropy alloy is realized mainly through the dislocation slip, phase transformation of face-centered-cubic structure to hexagonal-close-packed structure in crystalline part and shear band multiplication in amorphous part. If the amorphous layer spacing is larger, the plastic deformation of the high-entropy alloy is dominated by the formation of uniform shear bands in the amorphous phase. In addition, the amorphous phase in the dual-phase high-entropy alloy structure can stabilize the crystalline grains. The results of this study can provide a guidance for designing and preparing high entropy alloy with high performance.
-
Keywords:
- crystalline/amorphous dual-phase high entropy alloy /
- size effect /
- deformation mechanism /
- molecular dynamics simulation
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[2] 王浩玉, 农智升, 王继杰, 朱景川 2019 68 036101Google Scholar
Wang H Y, Nong Z S, Wang J J, Zhu J C 2019 Acta Phys. Sin. 68 036101Google Scholar
[3] George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar
[4] Zhang W, Ma Z, Li C, Guo C, Liu D, Zhao H, Ren L 2022 J. Mater. Sci. Technol. 114 102Google Scholar
[5] Zhang X, Divinski S V, Grabowski B 2022 Acta Mater. 227 117677Google Scholar
[6] 张勇, 陈明彪, 杨潇 2020 先进高熵合金技术 (北京: 化学工业出版社) 第76—123页
Zhang Y, Chen M B, Yang X 2020 Advanced High Entropy Alloy Technology (Beijing: Chemical Industry Press) pp76–123 (in Chinese)
[7] 李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 42Google Scholar
Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. App. Mech. 52 42Google Scholar
[8] Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar
[9] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程 2021 70 106201Google Scholar
Huang W J, Qiao J W, Chen S H, Wang X J, Wu Y C 2021 Acta Phys. Sin. 70 106201Google Scholar
[10] Wu G, Balachandran S, Gault B, Xia W, Liu C, Rao Z, We Y, Liu S, Lu J, Herbig M, Lu W, Dehm G, Li Z, Raabe D 2020 Adv. Mater. 32 2002619Google Scholar
[11] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar
[12] Huang H L, Wu Y, He J Y, Wang H, Liu X, An K, Wu W, Lu Z 2017 Adv. Mater. 29 1701678Google Scholar
[13] Chen L B, Wei R, Tang K, Zhang J, Jiang F, He L, Sun J 2018 Mater. Sci. Eng., A 716 150Google Scholar
[14] Yasuda H Y, Miyamoto H, Cho K, Nagase T 2017 Mater. Lett. 199 120Google Scholar
[15] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T, Lu Z 2018 Nature 563 546Google Scholar
[16] Sha Z D, Teng Y, Poh L H, Pei Q X, Xing G C, Gao H J 2019 Acta Mater. 169 147Google Scholar
[17] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar
[18] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[19] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 66 176111Google Scholar
Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111Google Scholar
[20] Wang Y, Li J, Hamza A V, Barbee T W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 11155Google Scholar
[21] Xiao L L, Zheng Z Q, Guo S W, Huang P, Wang F 2020 Mater. Des. 194 108895Google Scholar
[22] Xiao L, Zheng Z, Huang P, Wang F 2022 Scr. Mater. 210 114454Google Scholar
[23] Jiang L, Bai Z T, Powers M, Fan Y, Zhang W, George E P, Misra A 2022 Mater. Sci. Eng., A 848 143144Google Scholar
[24] Li J, Chen H, Feng H, Fang Q, Liu Y, Liu F, Wu H, Liaw P K 2020 J. Mater. Sci. Technol. 54 14Google Scholar
[25] Zhou X Y, Wu H H, Zhu J H, Li B, Wu Y 2021 Compos. Commun. 24 100658Google Scholar
[26] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉 2018 金属学报 54 1553Google Scholar
Lü Z P, Lei Z F, Huang H L, Liu S F, Zhang F, Duan D B, Cao P P, Wu Y, Liu X J, Wang H 2018 Acta Metall. Sin. 54 1553Google Scholar
[27] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 71 199601Google Scholar
Chen J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601Google Scholar
[28] 申天展, 宋海洋, 安敏荣 2021 70 186201Google Scholar
Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar
[29] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[30] Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511Google Scholar
[31] Yamakov V, Wolf D, Salazar M, Phillpot S R, Gleiter H 2001 Acta Mater. 49 2713Google Scholar
[32] Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar
[33] Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 NPJ Comput. Mater. 4 1Google Scholar
[34] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[35] Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar
[36] Li J, Fang Q H, Liu B, Liu Y 2018 Acta Mater. 147 35Google Scholar
[37] Sha Z D, Wong W H, Pei Q X, Branicio P S, Liu Z S, Wang T J, Guo T F, Gao H J 2017 J. Mech. Phys. Solids 104 84Google Scholar
[38] Song H Y, Li S, An M R, Deng Q, Li Y L 2018 Comput. Mater. Sci. 150 42Google Scholar
[39] Qi Y M, Zhao M, Feng M L 2021 J. Alloys Compd. 851 156923Google Scholar
[40] Fang Q H, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar
[41] Xu X D, Liu P, Tang Z, Hirata A, Song S X, Nieh T G, Liaw P K, Liu C T, Chen M W 2018 Acta Mater. 144 107Google Scholar
[42] Jiang K, Ren T F, Shan G B, Ye T, Chen L Y, Wang C X, Zhao F, Li J G, Suo T 2020 Mater. Sci. Eng., A 797 140125Google Scholar
[43] Chowdhury P, Canadinc D, Sehitoglu H 2017 Mater. Sci. Eng. R:Rep. 122 1Google Scholar
-
图 2 不同非晶相厚度的CoCrFeNiMn晶体/非晶双相高熵合金的拉伸力学性能 (a) 应力-应变曲线; (b) 杨氏模量; (c) 峰值应力和平均流动应力
Figure 2. Tensile properties of dual-phase CoCrFeNiMn crystalline/amorphous high-entropy alloys with different amorphous layer spacing: (a) Stress-strain curves; (b) Young’s modulus; (c) peak stress and average flow stress.
图 3 多晶CoCrFeNiMn高熵合金在不同拉伸应变时的原子结构演变图 (a) ε = 0.033; (b) ε = 0.045; (c) ε = 0.057; (d) ε = 0.089; (e) ε = 0.111; (f) ε = 0.200
Figure 3. Atomic configuration evolutions of polycrystalline CoCrFeNiMn high-entropy alloy: (a) ε = 0.033; (b) ε = 0.045; (c) ε = 0.057; (d) ε = 0.089; (e) ε = 0.111; (f) ε = 0.200.
图 4 不同非晶厚度的双相HEAs在不同拉伸应变时的原子结构演变图 (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm. 图4(a1)中圆圈代表了位错发射点, 图4(a2)中圆圈代表孪晶, 图4(a3)中圆圈代表位错锁, 图4(b1)中圆圈代表剪切带的雏形
Figure 4. Atomic configuration evolutions of the CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys with different amorphous layer spacing: (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm. The emission site of the dislocation, the deformation twin and the Lomer-Cottrell locks are depicted by the circles in Fig. 4(a1), Fig. 4(a2) and Fig. 4(a3), respectively. The circle in Fig. 4(b1) represents the embryo of the shear band.
图 5 不同非晶厚度的双相HEAs在拉伸过程中的不同结构原子比例变化图, 其中(a) h = 1 nm, (b) h =5 nm, (c) h =11 nm; (d) FCC相转变为HCP相的原子分数
Figure 5. Atomic fraction evolutions of different structures of the CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys with different amorphous layer spacing: (a) h = 1 nm; (b) h = 5 nm; (c) h = 11 nm. (d) Atomic fraction evolution of FCC structure transformation to HCP structure with h = 1, 5 and 11 nm.
图 7 晶体相中的变形机理细节图 (a) 形变孪晶细节图; (b) 图4(a3)中Lomer-Cottrell位错锁的放大图; (c) 实验中观察到的Shockley 部分位错相互作用形成Lomer-Cottrell位错锁[42]
Figure 7. Details of the plastic deformation mechanism in crystalline structure: (a) Detail of the deformation twins; (b) zoomed up snapshot of the Lomer-Cottrell locks of Fig. 4(a3); (c) the Lomer-Cottrell lock formed by the reaction of two Shockley partial dislocations in the experiment[42].
图 8 位错滑移辅助下的FCC-HCP转变机制图 (a) FCC结构示意图; (b) HCP结构示意图; (c) FCC→HCP相变示意图
Figure 8. Schematic illustration of FCC-to-HCP transformation mechanism as assisted by dislocation glide: (a) Schematic illustration of FCC structure; (b) schematic illustration of HCP structure; (c) FCC-to-HCP transformation mechanism.
-
[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar
[2] 王浩玉, 农智升, 王继杰, 朱景川 2019 68 036101Google Scholar
Wang H Y, Nong Z S, Wang J J, Zhu J C 2019 Acta Phys. Sin. 68 036101Google Scholar
[3] George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar
[4] Zhang W, Ma Z, Li C, Guo C, Liu D, Zhao H, Ren L 2022 J. Mater. Sci. Technol. 114 102Google Scholar
[5] Zhang X, Divinski S V, Grabowski B 2022 Acta Mater. 227 117677Google Scholar
[6] 张勇, 陈明彪, 杨潇 2020 先进高熵合金技术 (北京: 化学工业出版社) 第76—123页
Zhang Y, Chen M B, Yang X 2020 Advanced High Entropy Alloy Technology (Beijing: Chemical Industry Press) pp76–123 (in Chinese)
[7] 李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 42Google Scholar
Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. App. Mech. 52 42Google Scholar
[8] Ye Y F, Wang Q, Lu J, Liu C T, Yang Y 2016 Mater. Today 19 349Google Scholar
[9] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程 2021 70 106201Google Scholar
Huang W J, Qiao J W, Chen S H, Wang X J, Wu Y C 2021 Acta Phys. Sin. 70 106201Google Scholar
[10] Wu G, Balachandran S, Gault B, Xia W, Liu C, Rao Z, We Y, Liu S, Lu J, Herbig M, Lu W, Dehm G, Li Z, Raabe D 2020 Adv. Mater. 32 2002619Google Scholar
[11] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar
[12] Huang H L, Wu Y, He J Y, Wang H, Liu X, An K, Wu W, Lu Z 2017 Adv. Mater. 29 1701678Google Scholar
[13] Chen L B, Wei R, Tang K, Zhang J, Jiang F, He L, Sun J 2018 Mater. Sci. Eng., A 716 150Google Scholar
[14] Yasuda H Y, Miyamoto H, Cho K, Nagase T 2017 Mater. Lett. 199 120Google Scholar
[15] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T, Lu Z 2018 Nature 563 546Google Scholar
[16] Sha Z D, Teng Y, Poh L H, Pei Q X, Xing G C, Gao H J 2019 Acta Mater. 169 147Google Scholar
[17] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar
[18] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[19] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平 2017 66 176111Google Scholar
Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lü Z P 2017 Acta Phys. Sin. 66 176111Google Scholar
[20] Wang Y, Li J, Hamza A V, Barbee T W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 11155Google Scholar
[21] Xiao L L, Zheng Z Q, Guo S W, Huang P, Wang F 2020 Mater. Des. 194 108895Google Scholar
[22] Xiao L, Zheng Z, Huang P, Wang F 2022 Scr. Mater. 210 114454Google Scholar
[23] Jiang L, Bai Z T, Powers M, Fan Y, Zhang W, George E P, Misra A 2022 Mater. Sci. Eng., A 848 143144Google Scholar
[24] Li J, Chen H, Feng H, Fang Q, Liu Y, Liu F, Wu H, Liaw P K 2020 J. Mater. Sci. Technol. 54 14Google Scholar
[25] Zhou X Y, Wu H H, Zhu J H, Li B, Wu Y 2021 Compos. Commun. 24 100658Google Scholar
[26] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉 2018 金属学报 54 1553Google Scholar
Lü Z P, Lei Z F, Huang H L, Liu S F, Zhang F, Duan D B, Cao P P, Wu Y, Liu X J, Wang H 2018 Acta Metall. Sin. 54 1553Google Scholar
[27] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 71 199601Google Scholar
Chen J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601Google Scholar
[28] 申天展, 宋海洋, 安敏荣 2021 70 186201Google Scholar
Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar
[29] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[30] Cao A J, Wei Y G 2007 J. Appl. Phys. 102 083511Google Scholar
[31] Yamakov V, Wolf D, Salazar M, Phillpot S R, Gleiter H 2001 Acta Mater. 49 2713Google Scholar
[32] Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar
[33] Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 NPJ Comput. Mater. 4 1Google Scholar
[34] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[35] Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar
[36] Li J, Fang Q H, Liu B, Liu Y 2018 Acta Mater. 147 35Google Scholar
[37] Sha Z D, Wong W H, Pei Q X, Branicio P S, Liu Z S, Wang T J, Guo T F, Gao H J 2017 J. Mech. Phys. Solids 104 84Google Scholar
[38] Song H Y, Li S, An M R, Deng Q, Li Y L 2018 Comput. Mater. Sci. 150 42Google Scholar
[39] Qi Y M, Zhao M, Feng M L 2021 J. Alloys Compd. 851 156923Google Scholar
[40] Fang Q H, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar
[41] Xu X D, Liu P, Tang Z, Hirata A, Song S X, Nieh T G, Liaw P K, Liu C T, Chen M W 2018 Acta Mater. 144 107Google Scholar
[42] Jiang K, Ren T F, Shan G B, Ye T, Chen L Y, Wang C X, Zhao F, Li J G, Suo T 2020 Mater. Sci. Eng., A 797 140125Google Scholar
[43] Chowdhury P, Canadinc D, Sehitoglu H 2017 Mater. Sci. Eng. R:Rep. 122 1Google Scholar
Catalog
Metrics
- Abstract views: 5437
- PDF Downloads: 190
- Cited By: 0