-
采用基于量子力学的半经验哈密顿量的计算方法,即SCED-LCAO方法,模拟研究了碳硅二炔的稳定性结构、成键特点、电子结构等性质. 得出其最稳定的结构是单层平面结构,晶格常数为12.251 Å. 它通过 含有两个Si-C三键的链连接六元环构成. 这种平面结构在很大高温范围内都可以保持其稳定特性,直到1520 K时,该基本结构才被破坏,且结构中出现四元环. 体系温度低于1520 K时,均可通过降温,恢复其零温时的结构. 研究还发现这种共轭结构中Si,C 原子间存在稳定的sp杂化形式,对分布函数得出其键长为1.58 Å左右. 高温时sp杂化逐渐转变成其他杂化形式. 计算结果表明,在零温下,该电中性系统中存在离域π键,使得系统中的Si-C键长呈现平均化趋势. 研究表明,碳硅二炔的能隙为1.416 eV,LUMO,HOMO能级分别是0.386 eV和–1.03 eV表明了其n型半导体特性.A study to shed light on the existence of silicon-graphdiyne as well as their stability, structural and other properties, has been carried out using an efficient semi-empirical Hamiltonian scheme based on quantum mechanics. Its most stable structure is a single planar structure with a lattice constant of 12.251 Å. The system occurs structural phase transition at 1520 K. When the temperature is above 1520 K, the basic structure will be destroyed, While the temperature is below 1520 K, the system can restore its initial structure. It is found that sp hybridization exists between Si and C atoms in this conjugated structure. The study of pair distribution function shows that sp bond length is about 1.58 Å. The sp hybridization would gradually transform into other forms of hybridization at high temperatures. Our calculation indicates that delocalized π-bonds exist in this system and all the lengths of Si-C bonds tend to be more uniform. The energy gap is 1.416 eV. LUMO and HOMO energy levels are 0.386 eV and –1.03 eV respectively. It is found that the silicon-graphdiyne should be n-type material.
-
Keywords:
- silicon-graphdiyne /
- molecular dynamics simulation /
- sp hybridization /
- stability
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Hirsch A 2010 Nat. Mater. 9 868
[5] Haley M M 2008 Pure Appl. Chem. 80 519
[6] Li G X, Li Y L, Liu H B 2010 Chem. Commun. 46 3256
[7] Du H L, Deng Z B, L Z Y 2011 Synth. Met. 161 2055
[8] Li G X, Li Y L, Qian X M 2011 J. Phys. Chem. C 115 2611
[9] Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS Nano 5 2593
[10] Malko D, Neiss C 2012 Phys. Rev. Lett. 108 086804
[11] Jiao Y, Du A J, Hankel M, Rudolph V 2011 Chem. Commun. 47 11843
[12] Zheng Q, Luo G, Liu Q H 2012 Nanoscale 4 3990
[13] Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102
[14] Enyashin A N, Ivanovskii A N 2013 Superlattices and Microstructures 55 75
[15] Ongun Özçelik V, Ciraci S 2013 arXiv:1301.2593v2 [Cond-mat.mtrl-sci]
[16] Pei Y, Wu H B 2013 Chin. Phys. B 22 057303
[17] Sun X H, Li C P, Wong W K 2002 J. Am. Chem. Soc. 124 14464
[18] Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 62 107101]
[19] Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407
[20] Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李兵, 杨传路, 齐凯天, 张岩, 盛勇 2009 58 3104]
[21] Tang C, Wei X L, Tan X, Peng X Y, Sun L Z, Zhong J X 2012 Chin. Phys. B 21 066803
[22] Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408
[23] Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1
[24] Hellmann H 1937 Einführung in die Quantenchemie (Leipzig and Vienna: Franz Deuticke) pp 285–286
[25] Feynman R P 1939 Phys. Rev. 56 340
[26] Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708
[27] Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57
[28] Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Hirsch A 2010 Nat. Mater. 9 868
[5] Haley M M 2008 Pure Appl. Chem. 80 519
[6] Li G X, Li Y L, Liu H B 2010 Chem. Commun. 46 3256
[7] Du H L, Deng Z B, L Z Y 2011 Synth. Met. 161 2055
[8] Li G X, Li Y L, Qian X M 2011 J. Phys. Chem. C 115 2611
[9] Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS Nano 5 2593
[10] Malko D, Neiss C 2012 Phys. Rev. Lett. 108 086804
[11] Jiao Y, Du A J, Hankel M, Rudolph V 2011 Chem. Commun. 47 11843
[12] Zheng Q, Luo G, Liu Q H 2012 Nanoscale 4 3990
[13] Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102
[14] Enyashin A N, Ivanovskii A N 2013 Superlattices and Microstructures 55 75
[15] Ongun Özçelik V, Ciraci S 2013 arXiv:1301.2593v2 [Cond-mat.mtrl-sci]
[16] Pei Y, Wu H B 2013 Chin. Phys. B 22 057303
[17] Sun X H, Li C P, Wong W K 2002 J. Am. Chem. Soc. 124 14464
[18] Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 62 107101]
[19] Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407
[20] Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李兵, 杨传路, 齐凯天, 张岩, 盛勇 2009 58 3104]
[21] Tang C, Wei X L, Tan X, Peng X Y, Sun L Z, Zhong J X 2012 Chin. Phys. B 21 066803
[22] Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408
[23] Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1
[24] Hellmann H 1937 Einführung in die Quantenchemie (Leipzig and Vienna: Franz Deuticke) pp 285–286
[25] Feynman R P 1939 Phys. Rev. 56 340
[26] Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708
[27] Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57
[28] Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705
计量
- 文章访问数: 5981
- PDF下载量: 545
- 被引次数: 0