搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳硅二炔结构及性质分子动力学模拟研究

颜笑 辛子华 张娇娇

引用本文:
Citation:

碳硅二炔结构及性质分子动力学模拟研究

颜笑, 辛子华, 张娇娇

Molecular dynamics study on the structure and properties of silicon-graphdiyne

Yan Xiao, Xin Zi-Hua, Zhang Jiao-Jiao
PDF
导出引用
  • 采用基于量子力学的半经验哈密顿量的计算方法,即SCED-LCAO方法,模拟研究了碳硅二炔的稳定性结构、成键特点、电子结构等性质. 得出其最稳定的结构是单层平面结构,晶格常数为12.251 Å. 它通过 含有两个Si-C三键的链连接六元环构成. 这种平面结构在很大高温范围内都可以保持其稳定特性,直到1520 K时,该基本结构才被破坏,且结构中出现四元环. 体系温度低于1520 K时,均可通过降温,恢复其零温时的结构. 研究还发现这种共轭结构中Si,C 原子间存在稳定的sp杂化形式,对分布函数得出其键长为1.58 Å左右. 高温时sp杂化逐渐转变成其他杂化形式. 计算结果表明,在零温下,该电中性系统中存在离域π键,使得系统中的Si-C键长呈现平均化趋势. 研究表明,碳硅二炔的能隙为1.416 eV,LUMO,HOMO能级分别是0.386 eV和–1.03 eV表明了其n型半导体特性.
    A study to shed light on the existence of silicon-graphdiyne as well as their stability, structural and other properties, has been carried out using an efficient semi-empirical Hamiltonian scheme based on quantum mechanics. Its most stable structure is a single planar structure with a lattice constant of 12.251 Å. The system occurs structural phase transition at 1520 K. When the temperature is above 1520 K, the basic structure will be destroyed, While the temperature is below 1520 K, the system can restore its initial structure. It is found that sp hybridization exists between Si and C atoms in this conjugated structure. The study of pair distribution function shows that sp bond length is about 1.58 Å. The sp hybridization would gradually transform into other forms of hybridization at high temperatures. Our calculation indicates that delocalized π-bonds exist in this system and all the lengths of Si-C bonds tend to be more uniform. The energy gap is 1.416 eV. LUMO and HOMO energy levels are 0.386 eV and –1.03 eV respectively. It is found that the silicon-graphdiyne should be n-type material.
    • 基金项目: 国家自然科学基金(批准号:61176118)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176118).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Hirsch A 2010 Nat. Mater. 9 868

    [5]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [6]

    Li G X, Li Y L, Liu H B 2010 Chem. Commun. 46 3256

    [7]

    Du H L, Deng Z B, L Z Y 2011 Synth. Met. 161 2055

    [8]

    Li G X, Li Y L, Qian X M 2011 J. Phys. Chem. C 115 2611

    [9]

    Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS Nano 5 2593

    [10]

    Malko D, Neiss C 2012 Phys. Rev. Lett. 108 086804

    [11]

    Jiao Y, Du A J, Hankel M, Rudolph V 2011 Chem. Commun. 47 11843

    [12]

    Zheng Q, Luo G, Liu Q H 2012 Nanoscale 4 3990

    [13]

    Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102

    [14]

    Enyashin A N, Ivanovskii A N 2013 Superlattices and Microstructures 55 75

    [15]

    Ongun Özçelik V, Ciraci S 2013 arXiv:1301.2593v2 [Cond-mat.mtrl-sci]

    [16]

    Pei Y, Wu H B 2013 Chin. Phys. B 22 057303

    [17]

    Sun X H, Li C P, Wong W K 2002 J. Am. Chem. Soc. 124 14464

    [18]

    Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 62 107101]

    [19]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [20]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李兵, 杨传路, 齐凯天, 张岩, 盛勇 2009 58 3104]

    [21]

    Tang C, Wei X L, Tan X, Peng X Y, Sun L Z, Zhong J X 2012 Chin. Phys. B 21 066803

    [22]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [23]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [24]

    Hellmann H 1937 Einführung in die Quantenchemie (Leipzig and Vienna: Franz Deuticke) pp 285–286

    [25]

    Feynman R P 1939 Phys. Rev. 56 340

    [26]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [27]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [28]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Hirsch A 2010 Nat. Mater. 9 868

    [5]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [6]

    Li G X, Li Y L, Liu H B 2010 Chem. Commun. 46 3256

    [7]

    Du H L, Deng Z B, L Z Y 2011 Synth. Met. 161 2055

    [8]

    Li G X, Li Y L, Qian X M 2011 J. Phys. Chem. C 115 2611

    [9]

    Long M Q, Tang L, Wang D, Li Y, Shuai Z G 2011 ACS Nano 5 2593

    [10]

    Malko D, Neiss C 2012 Phys. Rev. Lett. 108 086804

    [11]

    Jiao Y, Du A J, Hankel M, Rudolph V 2011 Chem. Commun. 47 11843

    [12]

    Zheng Q, Luo G, Liu Q H 2012 Nanoscale 4 3990

    [13]

    Pan L D, Zhang L Z, Song B Q, Du S X, Gao H J 2011 Appl. Phys. Lett. 98 173102

    [14]

    Enyashin A N, Ivanovskii A N 2013 Superlattices and Microstructures 55 75

    [15]

    Ongun Özçelik V, Ciraci S 2013 arXiv:1301.2593v2 [Cond-mat.mtrl-sci]

    [16]

    Pei Y, Wu H B 2013 Chin. Phys. B 22 057303

    [17]

    Sun X H, Li C P, Wong W K 2002 J. Am. Chem. Soc. 124 14464

    [18]

    Zou X C, Wu M S, Liu G, Ouyang C Y, Xu B 2013 Acta Phys. Sin. 62 107101 (in Chinese) [邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波 2013 62 107101]

    [19]

    Yu M, Jayanthi C S, Wu S Y 2010 Phys. Rev. B 82 075407

    [20]

    Li B, Yang C L, Qi K T, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 3104 (in Chinese) [李兵, 杨传路, 齐凯天, 张岩, 盛勇 2009 58 3104]

    [21]

    Tang C, Wei X L, Tan X, Peng X Y, Sun L Z, Zhong J X 2012 Chin. Phys. B 21 066803

    [22]

    Leahy C, Yu M, Jayanthi C S, Wu S Y 2006 Phys. Rev. B 74 155408

    [23]

    Yu M, Wu S Y, Jayanthi C S 2009 Physica E 42 1

    [24]

    Hellmann H 1937 Einführung in die Quantenchemie (Leipzig and Vienna: Franz Deuticke) pp 285–286

    [25]

    Feynman R P 1939 Phys. Rev. 56 340

    [26]

    Yu M, Chaudhuri I, Leahy C, Wu S Y, Jayanthi C S 2009 J. Chem. Phys. 130 184708

    [27]

    Yu M, Jayanthi C S, Wu S Y 2013 J. Mater. Res. 28 57

    [28]

    Yu M, Jayanthi C S, Wu S Y 2012 Nanotechnology 23 235705

  • [1] 苗瑞霞, 王业飞, 谢妙春, 张德栋. 单空位缺陷对二维δ-InSe稳定性的影响.  , 2024, 73(4): 043102. doi: 10.7498/aps.73.20230904
    [2] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析.  , 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [3] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析.  , 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [4] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析.  , 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [5] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究.  , 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [6] 张娇娇, 辛子华, 张计划, 颜笑, 邓密海. α-碳锗炔稳定性及性质模拟.  , 2014, 63(20): 207303. doi: 10.7498/aps.63.207303
    [7] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究.  , 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [8] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [9] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性.  , 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [10] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案.  , 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [11] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析.  , 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [12] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析.  , 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [13] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解.  , 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [14] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟.  , 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [15] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] 李 欣, 胡元中, 王 慧, 陈 辉. 润滑膜全氟聚醚的稳定性.  , 2007, 56(7): 4094-4098. doi: 10.7498/aps.56.4094
    [17] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究.  , 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [18] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究.  , 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [19] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性.  , 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [20] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解.  , 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
计量
  • 文章访问数:  5981
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-26
  • 修回日期:  2013-09-01
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map