搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究

梁永超 刘让苏 朱轩民 周丽丽 田泽安 刘全慧

引用本文:
Citation:

液态Mg7Zn3合金快速凝固过程中微观结构演变机理的模拟研究

梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧

Simulation study of evolution mechanisms of microstructures during rapid solidification of liquid Mg7Zn3 alloy

Liang Yong-Chao, Liu Rang-Su, Zhu Xuan-Min, Zhou Li-Li, Tian Ze-An, Liu Quan-Hui
PDF
导出引用
  • 采用分子动力学方法对液态Mg7Zn3合金的快速凝固过程进行了模拟研究,并采用双体分布函数、Honeycutt-Andersen键型指数法、原子团类型指数法(CTIM)以及遗传跟踪等方法对凝固过程中团簇结构的形成、演变特性进行了分析.结果表明:在以冷速为1×1012 K ·s-1的凝固过程中, Zn-Zn原子之间的相互成键的概率明显增加,形成以1551,1541,1431键型为主的非晶态结构.其特征键型1551随温度变化
    A simulation study has been performed for the rapid solidification process of liquid Mg7Zn3 alloy by using molecular dynamics method. The pair distribution function g(r) curves, the bond-type index method of Honeycutt-Andersen (H-A), the cluster-type index method and the genetic tracking method have been used to analyze the formation and evolution properties of cluster structures during the solidification process. The results show that the bonding probability between Zn-Zn atoms is increased obviously during the solidification process at cooling rate of 1×1012 K ·s-1. The amorphous structures are formed mainly with the 1551, 1541 and 1431 bond-types, and the turning point of the relation curve of the characteristic 1551 bond-type with temperature is corresponding to the glass transition temperature Tg, thus it maybe become a new method to determine Tg. The basic cluster (12 0 12 0) consisting of 1551 bond-type plays a key role in forming amorphous structure, and becomes the main body of the large clusters which are formed by the combination of some middle and small clusters with distinctly different sizes, through mutual competition by unceasing annex and evolution in a seesaw manner (in turn of obtaining and losing).
    • 基金项目: 国家自然科学基金(批准号:50871033, 50571037)资助的课题.
    [1]

    Jha N, Mishrab A K 2001 J. Alloys Compd. 329 224

    [2]

    Zhou H Y,Liu T M,Wang J X 2006 J. Chongqing Uni. 29(12) 68 [周鸿翼、刘天模、王金星 2006 重庆大学学报 29(12) 68]

    [3]

    Gao X, Nie J F 2007 Scripta Materialia 57 655

    [4]

    Gao J C, Wu S, Qiao L Y, Wang Y 2008 Trans. Nonfcrrous Met. Soc. China 18 588

    [5]

    Somekawa H, Singh A, Mukai T 2009 Scripta Materialia 60 411

    [6]

    Hafner J, Krajci M 1993 Phys. Rev. B 47 11795

    [7]

    Such J B, Rudin H, Guntherodt H J, Beck H 1984 J. Non-Cryst. Solids 61-62 295

    [8]

    Ito M, Iwasaki H, Shiotan N 1984 J. Non-Cryst. Solids 61-62 303

    [9]

    Jin Z H, Lu K, Gong Y D, Hu Z Q 1997 J. Chem. Phys. 106 8830

    [10]

    Liu R S, Qin S P, Hou Z Y, Chen X Y, Liu F X 2004 Acta. Phys. Sin. 53 3119(in Chinese)[刘让苏、覃树萍、侯兆阳、陈 晓莹、刘凤翔 2004 53 3119] 〖11] Zhou L L, Liu R S, Hou Z Y, Tian Z A, Lin Y, Liu Q H 2008 Acta. Phys. Sin. 57 3653(in Chinese) [周丽丽、刘让苏、侯兆阳、田泽安、林 艳、刘全慧 2008 57 3653]

    [11]

    Zhang H T, Liu R S, Hou Z Y, Zhang A L, Chen X Y, Du H S 2006 Acta. Phys. Sin. 55 2409(in Chinese)[张海涛、刘让苏、侯兆阳、张爱龙、陈晓莹、杜生海 2006 55 2409]

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Tian Z A, Liu R S, Liu H R, Zheng C X, Hou Z Y, Peng P 2008 J. Non-Cryst. Solids 354 3705

    [14]

    Dong K J, Liu R S, Yu A B, Zou R P, Li J Y 2003 J. Phys: Condens. Matter 15 743

    [15]

    Liu R S,Liu F X,Dong K J, Zheng C X, Liu H R, Peng P, Li J Y 2006 Sci. China E 49 172

    [16]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys: Condens. Matter 19 196103

    [17]

    Wang S, Lai S K 1980 J. Phys. F 10 2717

    [18]

    Li D H, Li X R, Wang S 1986 J.Phys. F 16 309

    [19]

    Rudin H, Jost S, Guntherodt H J 1984 J. Non-Cryst. Solids 61-62 291

    [20]

    Hou Z Y, Liu L X, Liu R S, Tian Z A 2009 Acta. Phys. Sin. 58 4817(in Chinese)[侯兆阳、刘丽霞、刘让苏、田泽安 2009 58 4817]

    [21]

    Gao T H, Liu R S, Zhou L L, Tian Z A, Xue Q 2009 Acta Phys. -Chim. Sin. 25 2093(in Chinese)[高廷红、刘让苏、周 丽丽、田泽安、谢泉2009 物理化学学报25 2093] 〖23] Li D H, Moore R A, Wang S 1988 J. Chem. Phys. 88 2700

    [22]

    Tanaka M J 1983 Phys. Soc. Jpn. 52 1270

    [23]

    Wendt H R, Abraham F F 1978 Phys. Rev. Lett. 41 1244

    [24]

    Liu R S, Zhou Q Y, Li J Y 1995 J. At. Mol. Phys. 12 16(in Chinese)[刘让苏、周群益、李基永1995 原子与分子 ,12 16]

    [25]

    Yi X H, Liu R S, Tian Z A, Hou Z Y, Li X Y, Zhou Q Y 2008 Trans. Nonferrous Met. Soc. China 18 33

    [26]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [27]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949.

    [28]

    Zhao S, Li J F, Liu L, Zhou Y He 2009 Chin. Phys. B 18 1917

    [29]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta. Phys. Sin. 55 1320(in Chinese)[耿浩然、孙春静、杨中喜、王 瑞、吉蕾蕾 2006 55 1320]

    [30]

    Li H, Bian X F, Wang G H 2003 Phys. Rev. B 67 094202

    [31]

    Liu H R, Liu R S, Zhang A L,Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3747

    [32]

    Liu R S, Li J Y, Zhou Z, Peng P, Xie Q, Zheng C X 1998 Trans. Nonferrous Met. Soc. China 8 533

    [33]

    Liu R S, Li J Y, Zhou Q Y 1995 Chin. Sci. Bull. 40 1729

    [34]

    Honeycutt J D, Anderson H C 1986 J. Phys. Chem. 90 1585

    [35]

    Martin T P, Naher U, Schaber H 1992 Chem. Phys. Lett. 199 470

  • [1]

    Jha N, Mishrab A K 2001 J. Alloys Compd. 329 224

    [2]

    Zhou H Y,Liu T M,Wang J X 2006 J. Chongqing Uni. 29(12) 68 [周鸿翼、刘天模、王金星 2006 重庆大学学报 29(12) 68]

    [3]

    Gao X, Nie J F 2007 Scripta Materialia 57 655

    [4]

    Gao J C, Wu S, Qiao L Y, Wang Y 2008 Trans. Nonfcrrous Met. Soc. China 18 588

    [5]

    Somekawa H, Singh A, Mukai T 2009 Scripta Materialia 60 411

    [6]

    Hafner J, Krajci M 1993 Phys. Rev. B 47 11795

    [7]

    Such J B, Rudin H, Guntherodt H J, Beck H 1984 J. Non-Cryst. Solids 61-62 295

    [8]

    Ito M, Iwasaki H, Shiotan N 1984 J. Non-Cryst. Solids 61-62 303

    [9]

    Jin Z H, Lu K, Gong Y D, Hu Z Q 1997 J. Chem. Phys. 106 8830

    [10]

    Liu R S, Qin S P, Hou Z Y, Chen X Y, Liu F X 2004 Acta. Phys. Sin. 53 3119(in Chinese)[刘让苏、覃树萍、侯兆阳、陈 晓莹、刘凤翔 2004 53 3119] 〖11] Zhou L L, Liu R S, Hou Z Y, Tian Z A, Lin Y, Liu Q H 2008 Acta. Phys. Sin. 57 3653(in Chinese) [周丽丽、刘让苏、侯兆阳、田泽安、林 艳、刘全慧 2008 57 3653]

    [11]

    Zhang H T, Liu R S, Hou Z Y, Zhang A L, Chen X Y, Du H S 2006 Acta. Phys. Sin. 55 2409(in Chinese)[张海涛、刘让苏、侯兆阳、张爱龙、陈晓莹、杜生海 2006 55 2409]

    [12]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [13]

    Tian Z A, Liu R S, Liu H R, Zheng C X, Hou Z Y, Peng P 2008 J. Non-Cryst. Solids 354 3705

    [14]

    Dong K J, Liu R S, Yu A B, Zou R P, Li J Y 2003 J. Phys: Condens. Matter 15 743

    [15]

    Liu R S,Liu F X,Dong K J, Zheng C X, Liu H R, Peng P, Li J Y 2006 Sci. China E 49 172

    [16]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys: Condens. Matter 19 196103

    [17]

    Wang S, Lai S K 1980 J. Phys. F 10 2717

    [18]

    Li D H, Li X R, Wang S 1986 J.Phys. F 16 309

    [19]

    Rudin H, Jost S, Guntherodt H J 1984 J. Non-Cryst. Solids 61-62 291

    [20]

    Hou Z Y, Liu L X, Liu R S, Tian Z A 2009 Acta. Phys. Sin. 58 4817(in Chinese)[侯兆阳、刘丽霞、刘让苏、田泽安 2009 58 4817]

    [21]

    Gao T H, Liu R S, Zhou L L, Tian Z A, Xue Q 2009 Acta Phys. -Chim. Sin. 25 2093(in Chinese)[高廷红、刘让苏、周 丽丽、田泽安、谢泉2009 物理化学学报25 2093] 〖23] Li D H, Moore R A, Wang S 1988 J. Chem. Phys. 88 2700

    [22]

    Tanaka M J 1983 Phys. Soc. Jpn. 52 1270

    [23]

    Wendt H R, Abraham F F 1978 Phys. Rev. Lett. 41 1244

    [24]

    Liu R S, Zhou Q Y, Li J Y 1995 J. At. Mol. Phys. 12 16(in Chinese)[刘让苏、周群益、李基永1995 原子与分子 ,12 16]

    [25]

    Yi X H, Liu R S, Tian Z A, Hou Z Y, Li X Y, Zhou Q Y 2008 Trans. Nonferrous Met. Soc. China 18 33

    [26]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [27]

    Zhang J X, Li H, Zhang J, Song X G, Bian X F 2009 Chin. Phys. B 18 4949.

    [28]

    Zhao S, Li J F, Liu L, Zhou Y He 2009 Chin. Phys. B 18 1917

    [29]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta. Phys. Sin. 55 1320(in Chinese)[耿浩然、孙春静、杨中喜、王 瑞、吉蕾蕾 2006 55 1320]

    [30]

    Li H, Bian X F, Wang G H 2003 Phys. Rev. B 67 094202

    [31]

    Liu H R, Liu R S, Zhang A L,Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3747

    [32]

    Liu R S, Li J Y, Zhou Z, Peng P, Xie Q, Zheng C X 1998 Trans. Nonferrous Met. Soc. China 8 533

    [33]

    Liu R S, Li J Y, Zhou Q Y 1995 Chin. Sci. Bull. 40 1729

    [34]

    Honeycutt J D, Anderson H C 1986 J. Phys. Chem. 90 1585

    [35]

    Martin T P, Naher U, Schaber H 1992 Chem. Phys. Lett. 199 470

  • [1] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟.  , 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [2] 李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞. Ti3Al合金凝固过程晶核形成及演变过程的模拟研究.  , 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [3] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟.  , 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [4] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响.  , 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [6] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究.  , 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [7] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟.  , 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [8] 坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜. Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟.  , 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [9] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [10] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究.  , 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [11] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究.  , 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [12] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究.  , 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [13] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究.  , 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [14] 郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安. 冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响.  , 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [15] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.  , 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [16] 周丽丽, 刘让苏, 侯兆阳, 田泽安, 林 艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.  , 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [17] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 易学华, 刘让苏, 田泽安, 侯兆阳, 王 鑫, 周群益. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究.  , 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [20] 侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
计量
  • 文章访问数:  9451
  • PDF下载量:  1120
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-06
  • 修回日期:  2010-05-08
  • 刊出日期:  2010-11-15

/

返回文章
返回
Baidu
map