搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模型二元有序合金固液界面结构的分子动力学研究

郑小青 杨洋 孙得彦

引用本文:
Citation:

模型二元有序合金固液界面结构的分子动力学研究

郑小青, 杨洋, 孙得彦

Atomistic characterization of a modeled binary ordered alloy solid-liquid interface

Zheng Xiao-Qing, Yang Yang, Sun De-Yan
PDF
导出引用
  • 采用分子动力学方法, 研究了模型二元有序合金体系的平衡界面结构和界面处原子的扩散行为. 计算结果表明, 该二元有序合金的固液界面属于光滑界面. 由于固体中同时存在结构和化学有序, 从而导致界面处的原子结构与单质以及异质固液界面的结构明显不同. 在界面法向方向上, 粒子数密度呈复杂的波动行为, 并延伸到液体中约30 Å. 对界面层的二维结构分析表明, 固液转变层部分原子形成了二维固体团簇. 从固体到液体, 扩散系数从零逐渐增加到一个饱和值. 在界面处附近, 平行于界面方向的扩散系数明显比垂直于界面方向的大.
    Using molecular dynamics simulations, we investigate the structure and transport properties of solid-liquid interface in a model ordered alloy. Our results show that the studied interface is a smooth interface. Due to the coexistence of structural order and chemical order, the structure of this interface is remarkably different from heterogeneous or pure element solid-liquid interface. The number density oscillates in a complicated way along the interface normal direction, and this oscillation goes into liquid around 30 Å. The two-dimensional structural analysis shows that the atoms form two-dimensional ordered clusters in the transition layer. The diffusion constant gradually increases from zero to a saturation value in the liquid side far from the interface. In the vicinity of the interface, the diffusion constant parallel to the interface direction is large than that along interface normal.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921401)国家自然科学基金(批准号: 11174079)、上海市曙光计划(批准号: 10GG14)和上海市教委创新项目(批准号: 11ZZ39)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921401), the National Natural Science Foundation of China (Grant No. 11174079), the "Dawn" Program of Shanghai Education Commission, China (Grant No. 10GG14) and Innvation Program of Shanghai Education Commission, China (Grant No. 11ZZ39).
    [1]

    Liu X Y, Boek E S, Briels W J, Bennema P 1995 Nature 374 342

    [2]

    Oxtoby D W 1990 Nature 347 725

    [3]

    Vlieg E 2002 Surf. Sci. 500 458

    [4]

    Spaepen F 1975 Acta Metal. 23 729

    [5]

    Ladd A J C, Woodcock L V 1978 J. Phys. C 11 3565

    [6]

    Mori A, Manabe R, Nishioka K 1995 Phys. Rev. E 51 R3831

    [7]

    Davidchack R L, Laird B B 1998 J. Chem. Phys. 108 9452

    [8]

    de Vries S A, Goedtkindt P, Steadman P, Vlieg E 1999 Phys. Rev. B 59 13301

    [9]

    Reedijk M F, Arsic J, de Theije F K, McBride M T, Peters K F, Vlieg E 2001 Phys. Rev. B 64 033403

    [10]

    Reedijk M F, Arsic J, Hollander F F A, de Vries S A, Vlieg E 2003 Phys. Rev. Lett. 90 066103

    [11]

    Arsic J, Kaminski D, Poodt P, Vlieg E 2004 Phys. Rev. B 69 245406

    [12]

    Oh S H, Kauffmann Y, Scheu C, Kaplan W D, Ruhle M 2005 Science 310 661

    [13]

    Saka H, Sasaki K, Tsukimoto S, Arai S 2005 J. Mater. Res. 20 1629

    [14]

    Toney M F, Howard J N, Richer J, Borges G L, Gordon J G, Melroy O R, Wiseler D G, Yee D, Sorensen L B 1994 Nature 368 444

    [15]

    Huisman W J, Peters J F, Zwanenburg M J, de Vries S A, Derry T E, Abernathy D, van der Veen J F 1997 Nature 390 379

    [16]

    Cheng L, Fenter P, Nagy K L, Schlegel M L, Sturchio N C 2001 Phys. Rev. Lett. 87 156103

    [17]

    Kaplan W D, Kauffmann Y 2006 Annu. Rev. Mater. Res. 36 1

    [18]

    Grey F, Feidenhans'l R, Pedersen J S, Nielsen M, Johnson R L 1990 Phys. Rev. B 41 9519

    [19]

    Donnelly S E, Birtcher R C, Allen C W, Morrison I, Furuya K, Song M, Mitsuishi K, Dahmen U 2002 Science 296 507

    [20]

    Kauffmann Y, Oh S H, Koch C T, Hashibon A, Scheu C, Ruhle M, Kaplan W D 2011 Acta Mater. 59 4378

    [21]

    Laird B B, Haymet A D J 1992 Chem. Rev. 92 1819

    [22]

    Broughton J Q, Bonissent A, Abraham F F 1981 J. Chem. Phys. 74 4029

    [23]

    Huitema H E A, Vlot M J, van der Eerden J P 1999 J. Chem. Phys. 111 4714

    [24]

    Jesson B J, Madden P A 2000 J. Chem. Phys. 113 5935

    [25]

    Hoyt J J, Asta M, Karma A 2001 Phys. Rev. Lett. 86 5530

    [26]

    Becker C A, Hoyt J J, Buta D, Asta M 2007 Phys. Rev. E 75 061610

    [27]

    Palafox-Hernandez J P, Laird B B, Asta M 2011 Acta Mater. 59 3137

    [28]

    Gersermans P, Gorse D, Pontikis V 2000 J. Chem. Phys. 113 6382

    [29]

    Hashibon A, Adler J, Finnis M W, Kaplan W D 2002 Comp. Mater. Sci. 24 443

    [30]

    Zhang X, Rice S A 2005 J. Chem. Phys. 123 104703

    [31]

    Davidchack R L, Laird B B 1999 Mol. Phys. 97 833

    [32]

    Davidchack R L, Laird B B 1996 Phys. Rev. E 54 R5905

    [33]

    Sibug-Aga R, Laird B B 2002 J. Chem. Phys. 116 3410

    [34]

    Sibug-Aga R, Laird B B 2002 Phys. Rev. B 66 144106

    [35]

    Becker C A, Asta M, Hoyt J J, Foiles S M 2006 J. Chem. Phys. 124 164708

    [36]

    Becker C A, Olmsted D L, Asta M, Hoyt J J, Foiles S M 2009 Phys. Rev. B 79 054109

    [37]

    Ramalingam H, Asta M, van de Walle A, Hoyt J J 2002 Interface Sci. 10 149

    [38]

    Henager C, Morris J R 2009 Phys. Rev. B 80 245309

    [39]

    Vlot M J, van Miltenburg J C, Oonk H A J 1997 J. Chem. Phys. 107 10102

    [40]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [41]

    Gao Y F, Yang Y, Sun D Y, Asta M, Hoyt J J 2010 J. Cryst. Growth 312 3238

    [42]

    Buta D, Asta M, Hoyt J J 2008 Phys. Rev. E 78 031605

    [43]

    Sun D Y, Asta M, Hoyt J J 2004 Phys. Rev. B 69 174103

    [44]

    Ashcroft N W, Mermin D N 1976 Solid State Physics (Toronto: Thomson Learning)

    [45]

    Broughton J Q, Gilmer G H 1986 J. Chem. Phys. 84 5759

    [46]

    Yang Y, Olmsted D L, Asta M, Laird B B 2012 Acta Mater. 60 4960

  • [1]

    Liu X Y, Boek E S, Briels W J, Bennema P 1995 Nature 374 342

    [2]

    Oxtoby D W 1990 Nature 347 725

    [3]

    Vlieg E 2002 Surf. Sci. 500 458

    [4]

    Spaepen F 1975 Acta Metal. 23 729

    [5]

    Ladd A J C, Woodcock L V 1978 J. Phys. C 11 3565

    [6]

    Mori A, Manabe R, Nishioka K 1995 Phys. Rev. E 51 R3831

    [7]

    Davidchack R L, Laird B B 1998 J. Chem. Phys. 108 9452

    [8]

    de Vries S A, Goedtkindt P, Steadman P, Vlieg E 1999 Phys. Rev. B 59 13301

    [9]

    Reedijk M F, Arsic J, de Theije F K, McBride M T, Peters K F, Vlieg E 2001 Phys. Rev. B 64 033403

    [10]

    Reedijk M F, Arsic J, Hollander F F A, de Vries S A, Vlieg E 2003 Phys. Rev. Lett. 90 066103

    [11]

    Arsic J, Kaminski D, Poodt P, Vlieg E 2004 Phys. Rev. B 69 245406

    [12]

    Oh S H, Kauffmann Y, Scheu C, Kaplan W D, Ruhle M 2005 Science 310 661

    [13]

    Saka H, Sasaki K, Tsukimoto S, Arai S 2005 J. Mater. Res. 20 1629

    [14]

    Toney M F, Howard J N, Richer J, Borges G L, Gordon J G, Melroy O R, Wiseler D G, Yee D, Sorensen L B 1994 Nature 368 444

    [15]

    Huisman W J, Peters J F, Zwanenburg M J, de Vries S A, Derry T E, Abernathy D, van der Veen J F 1997 Nature 390 379

    [16]

    Cheng L, Fenter P, Nagy K L, Schlegel M L, Sturchio N C 2001 Phys. Rev. Lett. 87 156103

    [17]

    Kaplan W D, Kauffmann Y 2006 Annu. Rev. Mater. Res. 36 1

    [18]

    Grey F, Feidenhans'l R, Pedersen J S, Nielsen M, Johnson R L 1990 Phys. Rev. B 41 9519

    [19]

    Donnelly S E, Birtcher R C, Allen C W, Morrison I, Furuya K, Song M, Mitsuishi K, Dahmen U 2002 Science 296 507

    [20]

    Kauffmann Y, Oh S H, Koch C T, Hashibon A, Scheu C, Ruhle M, Kaplan W D 2011 Acta Mater. 59 4378

    [21]

    Laird B B, Haymet A D J 1992 Chem. Rev. 92 1819

    [22]

    Broughton J Q, Bonissent A, Abraham F F 1981 J. Chem. Phys. 74 4029

    [23]

    Huitema H E A, Vlot M J, van der Eerden J P 1999 J. Chem. Phys. 111 4714

    [24]

    Jesson B J, Madden P A 2000 J. Chem. Phys. 113 5935

    [25]

    Hoyt J J, Asta M, Karma A 2001 Phys. Rev. Lett. 86 5530

    [26]

    Becker C A, Hoyt J J, Buta D, Asta M 2007 Phys. Rev. E 75 061610

    [27]

    Palafox-Hernandez J P, Laird B B, Asta M 2011 Acta Mater. 59 3137

    [28]

    Gersermans P, Gorse D, Pontikis V 2000 J. Chem. Phys. 113 6382

    [29]

    Hashibon A, Adler J, Finnis M W, Kaplan W D 2002 Comp. Mater. Sci. 24 443

    [30]

    Zhang X, Rice S A 2005 J. Chem. Phys. 123 104703

    [31]

    Davidchack R L, Laird B B 1999 Mol. Phys. 97 833

    [32]

    Davidchack R L, Laird B B 1996 Phys. Rev. E 54 R5905

    [33]

    Sibug-Aga R, Laird B B 2002 J. Chem. Phys. 116 3410

    [34]

    Sibug-Aga R, Laird B B 2002 Phys. Rev. B 66 144106

    [35]

    Becker C A, Asta M, Hoyt J J, Foiles S M 2006 J. Chem. Phys. 124 164708

    [36]

    Becker C A, Olmsted D L, Asta M, Hoyt J J, Foiles S M 2009 Phys. Rev. B 79 054109

    [37]

    Ramalingam H, Asta M, van de Walle A, Hoyt J J 2002 Interface Sci. 10 149

    [38]

    Henager C, Morris J R 2009 Phys. Rev. B 80 245309

    [39]

    Vlot M J, van Miltenburg J C, Oonk H A J 1997 J. Chem. Phys. 107 10102

    [40]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [41]

    Gao Y F, Yang Y, Sun D Y, Asta M, Hoyt J J 2010 J. Cryst. Growth 312 3238

    [42]

    Buta D, Asta M, Hoyt J J 2008 Phys. Rev. E 78 031605

    [43]

    Sun D Y, Asta M, Hoyt J J 2004 Phys. Rev. B 69 174103

    [44]

    Ashcroft N W, Mermin D N 1976 Solid State Physics (Toronto: Thomson Learning)

    [45]

    Broughton J Q, Gilmer G H 1986 J. Chem. Phys. 84 5759

    [46]

    Yang Y, Olmsted D L, Asta M, Laird B B 2012 Acta Mater. 60 4960

  • [1] 李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞. Ti3Al合金凝固过程晶核形成及演变过程的模拟研究.  , 2022, 71(1): 016101. doi: 10.7498/aps.71.20211415
    [2] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟.  , 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟.  , 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [4] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟.  , 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [5] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [6] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [7] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究.  , 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [8] 孙川琴, 黄海深, 毕庆玲, 吕勇军. 非晶态合金表面的水润湿动力学.  , 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [9] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究.  , 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [10] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟.  , 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [11] 王琛, 宋海洋, 安敏荣. 界面旋转角对双晶镁力学性质影响的分子动力学模拟.  , 2014, 63(4): 046201. doi: 10.7498/aps.63.046201
    [12] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟.  , 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [13] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟.  , 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [14] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响.  , 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [15] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [16] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟.  , 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [17] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [18] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究.  , 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [19] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟.  , 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
    [20] 高玉琳, 吕毅军, 郑健生, 蔡志岗, 桑海宇, 曾学然. 三元有序合金GaxIn1-xP(x=0.52)的时间分辨谱.  , 2002, 51(1): 174-177. doi: 10.7498/aps.51.174
计量
  • 文章访问数:  6901
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-06
  • 修回日期:  2012-07-26
  • 刊出日期:  2013-01-05

/

返回文章
返回
Baidu
map