搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究

徐春龙 侯兆阳 刘让苏

引用本文:
Citation:

Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究

徐春龙, 侯兆阳, 刘让苏

Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass

Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su
PDF
导出引用
  • 采用分子动力学方法对Ca70Mg30合金快速凝固玻璃形成过程进行了计算机模拟, 深入分析了液-固玻璃转变过程热力学、 动力学和结构特性的转变机理, 对不同方法所确立的玻璃转变温度之间的关系进行了探讨. 结果表明: 本模拟计算所获得的Ca70Mg30金属玻璃的结构因子和玻璃转变温度均与实验结果符合, 而且二十面体局域结构对Ca70Mg30金属玻璃的形成起决定性作用. 由于周围原子形成的瞬时笼子效应, 过冷液体动力学特性逐渐偏离Arrhenius规律而满足模态耦合理论的幂指数规律. 动力学玻璃转变温度接近于微观结构玻璃转变温度, 但高于热力学玻璃转变温度; 而且它们与理想动力学玻璃转变温度之间满足Odagaki关系.
    The rapid quenching process of Ca70Mg30 alloy is simulated by using the molecular dynamics method. During the liquid-glass transition process, the thermodynamic, dynamic and structural transition mechanisms are investigated deeply, and the relations between glass transition temperatures determined by different methods are discussed. It is found that both the simulated structural factor of Ca70Mg30 metallic glass and glass transition temperature are consistent with the experimental results, and the icosahedral local configuration plays a critical role in the formation of Ca70Mg30 metallic glass. The dynamic property of supercooled liquid gradually deviates from the Arrhenius law and satisfies the MCT power law due to the cage effect formed by neighbor atoms. It is also found that the structural glass transition temperature is close to the dynamic one, and they are higher than the calorimetric glass transition temperature. The relationship between them and the ideal dynamic glass transition temperature satisfies the Odagaki relation.
    • 基金项目: 国家自然科学基金(批准号: 51101022) 和中央高校基本科研业务费(批准号: CHD2010JC083, CHD2012JC096) 资助的课题.
    • Funds: Project supported by the National Natural Foundation of China (Grant No. 51101022) the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. CHD2010JC083, CHD2012JC096).
    [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [3]
    [4]
    [5]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [6]
    [7]

    Dai L H, Jiang M Q 2007 Adv. Mech. 37 346 (in Chinese) [戴兰宏, 蒋敏强 2007 力学进展 37 346]

    [8]
    [9]

    Anderson P W 1995 Science 267 1615

    [10]

    Wendt H R, Abraham F F 1978 Phys. Rev. Lett. 41 1244

    [11]
    [12]

    Li D H, Moore, R A, Wang S 1988 J. Chem. Phys. 88 2700

    [13]
    [14]
    [15]

    Qi Y, hin T, Kimura Y, Goddard III W A 1999 Phys. Rev. B 59 05205

    [16]
    [17]

    Zhang Y N, Wang L, Wang W M 2007 J. Phys.: Condens. Matter 19 196106

    [18]

    Li X P, Han Q Y, Liu H B, Chen K Y, Hu Z Q 1995 Acta Metal. Sin. 31 A356 (in Chinese) [李小平, 韩其勇, 刘洪波, 陈魁英, 胡状麒 1995 金属学报 31 A356]

    [19]
    [20]
    [21]

    Zhou G R, Gao Q M 2007 Acta Phys. Sin. 56 1499 (in Chinese) [周国荣, 高秋明 2007 56 1499]

    [22]
    [23]

    Dzugutov M, Simdyankin S I, Zetterling F H M 2002 Phys. Rev. Lett. 89 195701

    [24]
    [25]

    Liang Y C, Liu R S, Liu R S, Zhou L L, Tian Z A, Liu Q H 2010 Acta Phys. Sin. 59 7930 (in Chinese) [梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧 2010 59 7930]

    [26]
    [27]

    Sun Y L, Shen J, Valladares A A 2009 J. Non-Cryst. Solids 106 073520

    [28]
    [29]

    Gtze W, Sjgren L 1992 Rep. Prog. Phys. 55 241

    [30]

    Suck J B, Rudin H, Gntherodt H J, Beck H 1981 J. Phys. C: Solid State Phys. 14 2305

    [31]
    [32]

    Hafner J 1983 Phys. Rev. B 27 678

    [33]
    [34]
    [35]

    Chen K Y, Li Q C 1993 Acta Phys. Sin. 42 1491 (in Chinese) [陈魁英, 李庆春 1993 42 1491]

    [36]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [37]
    [38]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [39]
    [40]
    [41]

    Hou Z Y, Liu R S, Liu H R, Tian Z A, Wang X, Zhou Q Y, Chen Z H 2007 J. Chem. Phys. 127 174503

    [42]

    Hou Z Y, Liu L X, Liu R S 2009 Acta Phys. Sin. 58 4817 (in Chinese) [侯兆阳, 刘丽霞, 刘让苏 2009 58 4817]

    [43]
    [44]
    [45]

    Wang S, Lai S K 1980 J. Phys. F 10 2717

    [46]
    [47]

    Li D H, Li X R, Wang S 1986 J. Phys. F 16 309

    [48]
    [49]

    Jin Z H, Lu K, Gong Y D, Hu Z Q 1997 J. Chem. Phys. 106 8830

    [50]

    Hoover W G, Ladd A J C and Moran B 1982 Phys. Rev. Lett. 48 1818

    [51]
    [52]
    [53]

    Evans D J 1983 J. Chem. Phys. 78 3297

    [54]
    [55]

    Nassif E, Lamparter P, Steev S 1983 Z. Naturfors. Sect. A 38 1206

    [56]
    [57]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [58]
    [59]

    Honeycut J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [60]
    [61]

    Vogel H 1921 Phys. Z 22 645

    [62]
    [63]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339

    [64]
    [65]

    Tammann G, Hesse G 1926 Z. Anorg. Allg. Chem. 156 245

    [66]

    Faupel F, Frank W, Macht M P, Mehrer H, Naundorf V, Rtzke K, Schober H R, Sharma S K, Teichler H 2003 Rev. Mod. Phys. 75 237

    [67]
    [68]

    Kob W 1999 J. Phys.: Condens. Matter 11 R85

    [69]
    [70]

    Han X J, Teichler H 2007 Phys. Rev. E 75 061501

    [71]
    [72]
    [73]

    Odagaki T 1995 Phys. Rev. Lett. 75 3701

    [74]

    Hiwatari Y, Miyagawa H, Odagaki T 1991 Solid State Ionics 47 179

    [75]
  • [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [3]
    [4]
    [5]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [6]
    [7]

    Dai L H, Jiang M Q 2007 Adv. Mech. 37 346 (in Chinese) [戴兰宏, 蒋敏强 2007 力学进展 37 346]

    [8]
    [9]

    Anderson P W 1995 Science 267 1615

    [10]

    Wendt H R, Abraham F F 1978 Phys. Rev. Lett. 41 1244

    [11]
    [12]

    Li D H, Moore, R A, Wang S 1988 J. Chem. Phys. 88 2700

    [13]
    [14]
    [15]

    Qi Y, hin T, Kimura Y, Goddard III W A 1999 Phys. Rev. B 59 05205

    [16]
    [17]

    Zhang Y N, Wang L, Wang W M 2007 J. Phys.: Condens. Matter 19 196106

    [18]

    Li X P, Han Q Y, Liu H B, Chen K Y, Hu Z Q 1995 Acta Metal. Sin. 31 A356 (in Chinese) [李小平, 韩其勇, 刘洪波, 陈魁英, 胡状麒 1995 金属学报 31 A356]

    [19]
    [20]
    [21]

    Zhou G R, Gao Q M 2007 Acta Phys. Sin. 56 1499 (in Chinese) [周国荣, 高秋明 2007 56 1499]

    [22]
    [23]

    Dzugutov M, Simdyankin S I, Zetterling F H M 2002 Phys. Rev. Lett. 89 195701

    [24]
    [25]

    Liang Y C, Liu R S, Liu R S, Zhou L L, Tian Z A, Liu Q H 2010 Acta Phys. Sin. 59 7930 (in Chinese) [梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧 2010 59 7930]

    [26]
    [27]

    Sun Y L, Shen J, Valladares A A 2009 J. Non-Cryst. Solids 106 073520

    [28]
    [29]

    Gtze W, Sjgren L 1992 Rep. Prog. Phys. 55 241

    [30]

    Suck J B, Rudin H, Gntherodt H J, Beck H 1981 J. Phys. C: Solid State Phys. 14 2305

    [31]
    [32]

    Hafner J 1983 Phys. Rev. B 27 678

    [33]
    [34]
    [35]

    Chen K Y, Li Q C 1993 Acta Phys. Sin. 42 1491 (in Chinese) [陈魁英, 李庆春 1993 42 1491]

    [36]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [37]
    [38]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [39]
    [40]
    [41]

    Hou Z Y, Liu R S, Liu H R, Tian Z A, Wang X, Zhou Q Y, Chen Z H 2007 J. Chem. Phys. 127 174503

    [42]

    Hou Z Y, Liu L X, Liu R S 2009 Acta Phys. Sin. 58 4817 (in Chinese) [侯兆阳, 刘丽霞, 刘让苏 2009 58 4817]

    [43]
    [44]
    [45]

    Wang S, Lai S K 1980 J. Phys. F 10 2717

    [46]
    [47]

    Li D H, Li X R, Wang S 1986 J. Phys. F 16 309

    [48]
    [49]

    Jin Z H, Lu K, Gong Y D, Hu Z Q 1997 J. Chem. Phys. 106 8830

    [50]

    Hoover W G, Ladd A J C and Moran B 1982 Phys. Rev. Lett. 48 1818

    [51]
    [52]
    [53]

    Evans D J 1983 J. Chem. Phys. 78 3297

    [54]
    [55]

    Nassif E, Lamparter P, Steev S 1983 Z. Naturfors. Sect. A 38 1206

    [56]
    [57]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [58]
    [59]

    Honeycut J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [60]
    [61]

    Vogel H 1921 Phys. Z 22 645

    [62]
    [63]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339

    [64]
    [65]

    Tammann G, Hesse G 1926 Z. Anorg. Allg. Chem. 156 245

    [66]

    Faupel F, Frank W, Macht M P, Mehrer H, Naundorf V, Rtzke K, Schober H R, Sharma S K, Teichler H 2003 Rev. Mod. Phys. 75 237

    [67]
    [68]

    Kob W 1999 J. Phys.: Condens. Matter 11 R85

    [69]
    [70]

    Han X J, Teichler H 2007 Phys. Rev. E 75 061501

    [71]
    [72]
    [73]

    Odagaki T 1995 Phys. Rev. Lett. 75 3701

    [74]

    Hiwatari Y, Miyagawa H, Odagaki T 1991 Solid State Ionics 47 179

    [75]
  • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , 2021, (): . doi: 10.7498/aps.70.20211304
    [3] 姜文龙. 非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究.  , 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [4] 于海滨, 杨群. 超稳定玻璃.  , 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [5] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型.  , 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [6] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型.  , 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [7] 袁晨晨. 金属玻璃的键态特征与塑性起源.  , 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [8] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象.  , 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [10] 吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄. 冷速对液态金属Mg凝固过程中微观结构演变的影响.  , 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [11] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数.  , 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [12] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性.  , 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [13] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系.  , 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [14] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为.  , 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [15] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡.  , 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [16] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究.  , 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [17] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究.  , 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [18] 张丽丽, 张晋鲁, 蒋建国, 周恒为, 黄以能. 取向玻璃体系中分子之间取向关联的模型化及其模拟与分析.  , 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [19] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究.  , 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  8043
  • PDF下载量:  564
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-13
  • 修回日期:  2011-11-12
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map