-
基于镶嵌原子势,采用分子动力学模拟的方法探讨了Fe50Cu50合金熔体在1823 K下液-液相分离过程. 结果发现: 熔体中同类原子配位数随弛豫时间的延长逐渐增大,而异类原子配位数逐渐减少;由Bhatia-Thornton结构因子SCC(q)获得的相关长度随时间的变化也呈现出明显的递增趋势,表明该合金熔体在该温度下发生了液–液相分离. 原子轨迹的可视化显示结果发现,相分离的初期,体系呈明显的网络状组织,随时间的延长,异类原子逐渐分离,最终形成富Fe和富Cu的相分离组织,符合调幅分解特征. 与Fe75Cu25合金熔体的相分离过程对比发现,Fe与Cu原子数目相差越小,相分离行为越剧烈,形成稳定分层结构所需的时间越短. 以上研究从原子尺度上表征了金属熔体的相分离过程.
-
关键词:
- Fe50Cu50合金熔体 /
- 液-液相分离 /
- 调幅分解 /
- 分子动力学模拟
Molecular dynamics simulation based on the newly developed embedded atom method has been performed to explore the microstructure of liquid Fe50Cu50 alloy. The results show that coordination numbers (CNs) of Fe-Fe and Cu-Cu for Fe50Cu50 melt gradually increase with relaxation time increasing, and they are 9.9 and 9.3 respectively as the liquid is in an equilibrium state; while the CN of heterogeneous atomic pairs Fe-Cu gradually decreases, and it is about 4.6. The correlation length (CL) extracted from Bhatia-Thornton (B-T) structure factor increases with relaxation time increasing. Both CN and CL indicate that the Fe50Cu50 melt exhibits liquid-liquid (L-L) phase separation. The interconnected type of structure can be observed in the Fe50Cu50 melt at the early stage, then the heterogeneous atomic pairs separate gradually with time going by, the Fe-rich and Cu-rich structure are formed, which shows the characteristics of spinodal decomposition. By comparison, the atom snapshot of Fe75Cu25 melt is also visualized in the paper, and the finding indicates that the smaller number difference between Fe atom and Cu atom may lead to the stronger L-L phase separation, as a result of shorter time to reach stable layer-like structure. Our studies mentioned above characterize L-L phase separation of metallic liquid on the atomic scale.-
Keywords:
- Fe50Cu50 melt /
- liquid-liquid phase separation /
- spinodal decomposition /
- molecular dynamics simulation
[1] Li D, Robinson M B, Rathz T J, Williams G 1998 Mater. Lett. 36 152
[2] Ojha S N, Chaitonuinfay K 1978 Trans. Indian Inst. Metals 31 208
[3] Koch C C 1995 Mater. Trans. JIM 36 85
[4] Ratke L, Diefenbach S 1995 Mater. Sci. Eng. R. 15 263
[5] Schroenitz M, Dreizin E L 2003 J. Mater. Res. 18 1827
[6] Islam F, Medraj M 2004 Proceedings of CSME Forum p921
[7] Awe O E, Akinlade O, Hussain L A 2005 J. Alloys Compd. 387 256
[8] Kuendig A 2004 Acta Mater. 52 2441
[9] Sohn S W, Yook W, Kim W T, Kim D H 2012 Intermetallics 23 57
[10] Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 539
[11] Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 688
[12] Siggia E D 1979 Phys. Rev. A 20 595
[13] Aarts D G A L, Schmidt M, Lekkerkerker H N W 2004 Science 304 847
[14] Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) p269
[15] Bhat S, Tuninier R, Schurtenberger P 2006 J. Phys. Condens. Matter 18 L339
[16] Bates F S, Wiltzius P 1989 J. Chem. Phys. 91 3258
[17] Bailey A E, Poon W C K, Christianson R J, Schofied A B, Gasser U, Prasad V, Manley S, Segre P N, Cipelletti L, Meyer W V, Doherty Mp, Sankaran S, Jankovsky A L, Shiley W L, Bowen J P, Eggers J C, Kurta C, Lorik Jr T, Pusey P N, Weitz D A 2007 Phys. Rev. Lett. 99 205701
[18] Tanaka H 1995 Phys. Rev. E 51 1313
[19] Ren Q, Wang N, Zhang L, Wang J Y, Zheng Y P, Yao W J 2012 Acta Phys. Sin. 61 196401 (in Chinese) [任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静 2012 61 196401]
[20] Fang T, Wang L, Peng C X, Qi Y 2012 J. Phys.: Condens. Matter 24 505103
[21] Cao Z D, Georg P G 2005 Chin. Phys. Lett. 22 482
[22] Wang C P, Shi R P, Liu J X, Wang Y, Kainuma R, Ishida K 2002 Science 297 990
[23] Bhatia A B, Thornton D E 1970 Phys. Rev. B 2 3004
[24] Faber T E, Ziman J M 1965 Phil. Mag. 11 153
[25] Griesche A, Horbach J, Das S K 2007 Phys. Rev. B 75 174304
[26] Binder K, Das S K, Hobrach J, Parlee N A D 2006 J. Chem. Phys. 125 024506
-
[1] Li D, Robinson M B, Rathz T J, Williams G 1998 Mater. Lett. 36 152
[2] Ojha S N, Chaitonuinfay K 1978 Trans. Indian Inst. Metals 31 208
[3] Koch C C 1995 Mater. Trans. JIM 36 85
[4] Ratke L, Diefenbach S 1995 Mater. Sci. Eng. R. 15 263
[5] Schroenitz M, Dreizin E L 2003 J. Mater. Res. 18 1827
[6] Islam F, Medraj M 2004 Proceedings of CSME Forum p921
[7] Awe O E, Akinlade O, Hussain L A 2005 J. Alloys Compd. 387 256
[8] Kuendig A 2004 Acta Mater. 52 2441
[9] Sohn S W, Yook W, Kim W T, Kim D H 2012 Intermetallics 23 57
[10] Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 539
[11] Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 688
[12] Siggia E D 1979 Phys. Rev. A 20 595
[13] Aarts D G A L, Schmidt M, Lekkerkerker H N W 2004 Science 304 847
[14] Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) p269
[15] Bhat S, Tuninier R, Schurtenberger P 2006 J. Phys. Condens. Matter 18 L339
[16] Bates F S, Wiltzius P 1989 J. Chem. Phys. 91 3258
[17] Bailey A E, Poon W C K, Christianson R J, Schofied A B, Gasser U, Prasad V, Manley S, Segre P N, Cipelletti L, Meyer W V, Doherty Mp, Sankaran S, Jankovsky A L, Shiley W L, Bowen J P, Eggers J C, Kurta C, Lorik Jr T, Pusey P N, Weitz D A 2007 Phys. Rev. Lett. 99 205701
[18] Tanaka H 1995 Phys. Rev. E 51 1313
[19] Ren Q, Wang N, Zhang L, Wang J Y, Zheng Y P, Yao W J 2012 Acta Phys. Sin. 61 196401 (in Chinese) [任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静 2012 61 196401]
[20] Fang T, Wang L, Peng C X, Qi Y 2012 J. Phys.: Condens. Matter 24 505103
[21] Cao Z D, Georg P G 2005 Chin. Phys. Lett. 22 482
[22] Wang C P, Shi R P, Liu J X, Wang Y, Kainuma R, Ishida K 2002 Science 297 990
[23] Bhatia A B, Thornton D E 1970 Phys. Rev. B 2 3004
[24] Faber T E, Ziman J M 1965 Phil. Mag. 11 153
[25] Griesche A, Horbach J, Das S K 2007 Phys. Rev. B 75 174304
[26] Binder K, Das S K, Hobrach J, Parlee N A D 2006 J. Chem. Phys. 125 024506
计量
- 文章访问数: 6992
- PDF下载量: 567
- 被引次数: 0