-
Multiferroic materials have attracted considerable attention due to the novel quantum phenomena, including magnetoelectric coupling and topological domains, which derived from the cross-coupling mechanism between ferroelectric and magnetic order. However, the discovery of intrinsic multiferroic materials exhibiting magnetoelectric coupling remains limited, as ferroelectricity typically originates from the d0 electronic configuration, while ferromagnetism relies on partially filled dn state. Based on first principles calculations, this work demonstrate that electronic structure of PbTiO3 perovskite can be engineered by introducing an Aurivillius-type interface layer, which induces localized magnetic moments at the interface. The results reveal that while the system retains strong electric polarization (up to 116.88 μC/cm2), the interfacial charge modifies the electronic occupation of oxygen atoms, thereby generating interface magnetism and enabling magnetoelectric coupling in PbTiO3. Notably, this multiferroic state exhibits pronounced interface localization, with the magnetic moment decaying rapidly as the layer thickness increases. Importantly, the emergent magnetism is asymmetric, resulting in a net positive spontaneous magnetization of 2.0 μB, this observation indicates the emergence of ferrimagnetism at the interface. Furthermore, the interfacial regions manifest p-type conductivity behavior, exhibiting signatures characteristic of a two-dimensional hole gas (2DHG), the density of hole and charge carrier at the interface is several times higher than that in typical heterostructures. Overall, our work proposes a novel mechanism for designing multiferroic and offering a promising strategy for the development of magnetoelectric-coupled multiferroic devices.
-
Keywords:
- First-principles calculation /
- Multiferroic /
- Interfaces /
- PbTiO3
-
[1] Eerenstein W, Mathur N D, Scott J F 2006 Nature 442, 759
[2] Cheong S W, Mostovoy M 2007 Nat. Mater. 6, 13
[3] Yu B, Hu Z, Cheng Y, Peng B, Zhou Z, Liu M 2018 Acta Phys. Sin. 67, 157507(in Chinese) [俞斌,胡忠强,程宇心,彭斌,周子尧,刘明 2018 67, 157507]
[4] H.Béa, M. Gajek, M. Bibes, A. Barthélémy 2008 J. Phys.: Condens. Matter 20, 434221
[5] Scott J F 2000 Ferroelectric Memories (Berlin: Springer Nature) pp23—51
[6] Spaldin N A, Fiebig M 2005 Science 309, 5733
[7] Zhang J, Xie Y, Ji K, Shen X 2024 Appl. Phys. Lett. 125, 230503
[8] Zhou L, Wang X, Zhang H, Shen X, Dong D, Long Y 2018 Acta Phys. Sin. 67, 157507(in Chinese) [周龙,王潇,张慧敏,申旭东,董帅,龙有文2018 67, 157505]
[9] Fiebig M. 2005 J. Phys. D:Appl. Phys. 38, R123
[10] WangY, Hu J, Lin Y, Nan C W 2010 NPG Asia Mater. 2, 61
[11] Hill N A 2000 J. Phys. Chem. B 104, 6694
[12] Ji H, Yan Z, Zhou G, Wang X, Zhang J, Li Z, Kang P, Xu X 2020 Appl. Phys. Lett. 117, 192402
[13] Shimada T, Uratani Y, Kitamura T 2012 Appl. Phys. Lett. 100, 162901
[14] Gao L, Chen X, Qi J 2024 Appl. Phys. Lett. 125, 212903
[15] Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304, 5677
[16] Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12, 617
[17] Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T 2024 Phys. Rev. Lett. 132, 086801
[18] Xu T, Shimada T, Y. Araki, J. Wang, T. Kitamura 2015 Phys. Rev. B 92, 104
[19] Shimada T, Xu T, Uratani Y, Wang J, Kitamura T 2016 Nano Lett. 16, 6774
[20] Lin T, Gao A, Tang Z, Lin W, Sun M, Zhang Q, Wang X, Guo E, Lin G 2024 Chin. Phys. Lett. 41, 047701
[21] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37, 589
[22] Aleksandrov K, Beznosikov V 1997 Phys. Solid State 39, 695
[23] Choi W, Park B, Hwang J, Han G, Yang S, Lee H J, Lee S S, Jo J Y, Borisevich A Y, Jeong H Y, Oh S H, Lee J, Kim Y M 2024 Chin. Phys. B 33, 096805
[24] Neaton J B, Rabe K M 2003 Appl. Phys. Lett. 82, 1586
[25] Johnston K, Huang X, Neaton J B, Rabe K M 2005 Phys. Rev. B 71, 100
[26] Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Herme P, Gariglio S, Triscone J M, Ghosez P 2008 Nature 452, 732
[27] Aurivillius B 1949 Arkiv Kemi 1, 463
[28] Smolenskii G A, Isupov V A, Agranovskaya A I 1960 Phys. Solid State 1, 1429
[29] Subbarao E C 1961 J. Phys. Chem. Solids 23, 665
[30] Scott J F 2013 NPG Asia Mater. 5, e72
[31] Kresse G, Hafner J 1993 Phys. Rev. B 47, 558
[32] Li Z, Koval V, Mahajan A, Gao Z, Vecchini C, Stewart M, Cain M G, Tao K, Jia C, Viola G, Yan H 2020 Appl. Phys. Lett. 117, 052903
[33] Algueró M, Real R. P, Amorín H, Castro A 2022 Appl. Phys. Lett. 121, 122904
[34] Kresse G, Furthmüller J 1996 Phys. Rev. B 54, 11169
[35] Blöchl P E 1994 Phys. Rev. B 50, 17953
[36] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118, 8207
[37] Heyd J, Scuseria G E, Ernzerhof M 2006 J. Chem. Phys. 124, 219906
[38] Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77, 245202
[39] Bilc D I, Orlando R, Shaltaf R, Rignanese G M, Iniguez J, Ghosez P 2008 Phys. Rev. B 77, 165107
[40] Shimada T, Ueda T, Wang J, Kitamura T 2013 Phys. Rev. B 87, 174111
[41] Wen Z, Huang B, Lu T, Zou Z 2022 J. Inorg. Mater. 37, 787(in Chinese) [文志勤, 黄彬荣, 卢涛仪, 邹正光 2022 无机材料学报 37, 787]
[42] Robertson J, Warren W L, Tuttle B A 1995 J. Appl. Phys. 77, 3975
[43] Mabud S, Glazer A M 1979 J. Appl. Crystallogr. 12, 49
[44] Xu T, Wang J, Shimada T, Kitamura T 2013 J. Phys. Condens. Matter 25, 415901
[45] Rondinelli J M, Stengel M, Spaldin N A 2008 Nat. Nano. 3, 46
[46] Ahn C H, Bhattacharya A, Ventra M D, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D, Triscone J M 2006 Rev. Mod. Phys. 78, 1185
[47] Vaz C A F, Hoffman J, Segal Y, Reiner J W, Grober R D, Zhang Z, Ahn C H, Walker F J 2010 Phys. Rev. Lett. 104, 127202
[48] Redwing J M, Tischler M A, Flynn J S, Elhamri S, Ahoujja M, Newrock R S, Mitchel W C 1996 Appl. Phys. Lett. 69, 96
Metrics
- Abstract views: 110
- PDF Downloads: 4
- Cited By: 0