Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on thermal transport mechanism of amorphous hafnia based on quasi-harmonic Green-Kubo theory combined with hydrodynamic extrapolation method

ZHU Xiongfei SUN Jianshi XIONG Yucheng LI Shouhang LIU Xiangjun

Citation:

Research on thermal transport mechanism of amorphous hafnia based on quasi-harmonic Green-Kubo theory combined with hydrodynamic extrapolation method

ZHU Xiongfei, SUN Jianshi, XIONG Yucheng, LI Shouhang, LIU Xiangjun
cstr: 32037.14.aps.74.20250350
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Amorphous hafnia (a-HfO2) has attracted considerable attention due to its excellent dielectric properties and broad applicability in the electronic industry. Considering that the self-heating is becoming the bottleneck for the performance and reliability of microelectronic devices, it is necessary to clarify the thermal transport mechanism in a-HfO2. The microstructures of a-HfO2 can be significantly changed during the fabrication process, whose effects on thermal transport remain to be revealed. Here, we conduct a comprehensive investigation of thermal transport in a-HfO2 based on the quasi-harmonic Green-Kubo (QHGK) theory combined with hydrodynamic extrapolation. The calculation scheme fully considers the contributions from low-frequency vibrational modes, overcoming the drawbacks of finite size in the single QHGK method and molecular dynamics simulation. It is found that the thermal conductivity (κ) of a-HfO2 is weakly related to its degree of order. The amorphous structures with slower quenching speed and higher degree of order have higher thermal conductivities due to their slightly larger relaxation times. Modal analyses show that the mid- and low-frequency vibrational modes have significant contributions to thermal transport in a-HfO2, which is the main reason for the underestimation of the κ in other methods. Based on the anharmonic dynamic structure factor, we further separate the contributions of two fundamental heat carriers in amorphous materials: propagons and diffusons. It is found that diffusons dominate the κ in all a-HfO2 structures. Nevertheless, the contribution of the propagons is non-negligible, accounting for more than 20% and increasing with the degree of structural ordering. This study provides new insights into the microscopic mechanisms and guidance for manipulating thermal transport in a-HfO2.
      Corresponding author: LI Shouhang, shouhang.li@universite-paris-saclay.fr ; LIU Xiangjun, xjliu@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304039, 52150610495, 12374027), the Natural Science Foundation of Shanghai, China (Grant Nos. 22YF1400100, 21TS1401500), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 2232022D-22, CUSF-DH-T-2024061).
    [1]

    Wilk G D, Wallace R M, Anthony J 2001 J. Appl. Phys. 89 5243Google Scholar

    [2]

    Chen J H, Liang M F, Song Y, Yuan J J, Zhang M Y, Luo Y M, Wang N N 2024 Chin. Phys. B 33 047503Google Scholar

    [3]

    Wang Y, Zahid F, Wang J, Guo H 2012 Phys. Rev. B 85 224110Google Scholar

    [4]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta. Phys. Sin. 72 097302Google Scholar

    [5]

    Gao R, Liu C, Shi B, Li Y, Luo B, Chen R, Ouyang W, Gao H, Hu S, Wang Y 2024 Chin. Phys. Lett. 41 087701Google Scholar

    [6]

    Chen S, Chen M, Liu Y, Cao D, Chen G 2024 Chin. Phys. B 33 098701Google Scholar

    [7]

    McKenna K, Shluger A, Iglesias V, Porti M, Nafría M, Lanza M, Bersuker G 2011 Microelectron. Eng. 88 1272Google Scholar

    [8]

    袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵 2023 72 097703Google Scholar

    Yuan G L, Wang C H, Tang W B, Zhang R, Lu X B 2023 Acta. Phys. Sin. 72 097703Google Scholar

    [9]

    Liu K, Liu K, Zhang X, Fang J, Jin F, Wu W, Ma C, Wang L 2024 Chin. Phys. Lett. 41 117701Google Scholar

    [10]

    Scott E A, Gaskins J T, King S W, Hopkins P E 2018 APL Mater. 6 058302Google Scholar

    [11]

    Lu S X, Cebe P 1996 Polymer 37 4857Google Scholar

    [12]

    何宇亮, 周衡南, 刘湘娜, 程光煦 1990 39 1796Google Scholar

    He Y L, Zhou H N, Liu X N, Cheng G X, Yu S D 1990 Acta Phys. Sin. 39 1796Google Scholar

    [13]

    Wang S, Wang C, Li M, Huang L, Ott R, Kramer M, Sordelet D, Ho K 2008 Phys. Rev. B 78 184204Google Scholar

    [14]

    Wang Y, Fan Z, Qian P, Caro M A, Ala-Nissila T 2023 Phys. Rev. B 107 054303Google Scholar

    [15]

    林揆训, 林璇英, 梁厚蕴, 池凌飞, 余楚迎, 黄创君 2002 51 863Google Scholar

    Lin K X, Lin X Y, Liang H Y, Chi L F, Yu C Y, Huang C J 2002 Acta. Phys. Sin. 51 863Google Scholar

    [16]

    Kittel C 1949 Phys. Rev. 75 972Google Scholar

    [17]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [18]

    Zhu X, Shao C 2022 Phys. Rev. B 106 014305Google Scholar

    [19]

    Qiu R, Zeng Q Y, Han J S, Chen K, Kang D D, Yu X X, Dai J Y 2025 Phys. Rev. B 111 064103Google Scholar

    [20]

    Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495Google Scholar

    [21]

    Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [22]

    Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401Google Scholar

    [23]

    Prasai K, Biswas P, Drabold D 2016 Semicond. Sci. Techn. 31 073002Google Scholar

    [24]

    朱美芳 1996 45 499Google Scholar

    Zhu M F 1996 Acta Phys. Sin. 45 499Google Scholar

    [25]

    Mu X, Wu X, Zhang T, Go D B, Luo T 2014 Sci. Rep. 4 3909Google Scholar

    [26]

    王学智, 汤雨婷, 车军伟, 令狐佳珺, 侯兆阳 2023 72 056101Google Scholar

    Wang X Z, Tang Y T, Che J W, Linghu J J, Hou Z Y 2023 Acta Physica Sinica 72 056101Google Scholar

    [27]

    Yang F H, Zeng Q Y, Chen B, Kang D D, Zhang S, Wu J H, Yu X X, Dai J Y 2022 Chin. Phys. Lett. 39 116301Google Scholar

    [28]

    鲍华 2013 62 1Google Scholar

    Bao H 2013 Acta Phys. Sin. 62 1Google Scholar

    [29]

    Qiu R, Zeng Q Y, Wang H, Kang D D, Yu X X, Dai J Y 2023 Chin. Phys. Lett. 40 116301Google Scholar

    [30]

    Isaeva L, Barbalinardo G, Donadio D, Baroni S 2019 Nat. Commun. 10 3853Google Scholar

    [31]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [32]

    Harper A F, Iwanowski K, Witt W C, Payne M C, Simoncelli M 2024 Phys. Rev. Mater. 8 043601Google Scholar

    [33]

    Fiorentino A, Pegolo P, Baroni S 2023 npj Comput. Mater. 9 157Google Scholar

    [34]

    Barbalinardo G, Chen Z, Lundgren N W, Donadio D 2020 J. Appl. Phys. 128 135104Google Scholar

    [35]

    Fan Z Y, Wang Y Z, Ying P H, Song K K, Wang J J, Wang Y, Zeng Z Z, Xu K, Lindgren E, Rahm J M, Gabourie A J, Liu J H, Dong H K, Wu J Y, Chen Y, Zhong Z, Sun J, Erhart P, Su Y J, Ala-Nissila T 2022 J. Chem. Phys. 157 114801Google Scholar

    [36]

    Fan Z Y, Zeng Z Z, Zhang C Z, Wang Y Z, Song K K, Dong H K, Chen Y, Ala-Nissila T 2021 Phys. Rev. B 104 104309Google Scholar

    [37]

    Zhang H, Gu X, Fan Z, Bao H 2023 Phys. Rev. B 108 045422Google Scholar

    [38]

    Sivaraman G, Krishnamoorthy A N, Baur M, Holm C, Stan M, Csányi G, Benmore C, Vázquez-Mayagoitia Á 2020 npj Comput. Mater. 6 104Google Scholar

    [39]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [40]

    Zeng Q Y, Yu X X, Yao Y P, Gao T Y, Chen B, Zhang S, Kang D D, Wang H, Dai J Y 2021 Phys. Rev. Res. 3 033116Google Scholar

    [41]

    Franzblau D 1991 Phys. Rev. B 44 4925Google Scholar

    [42]

    Le Roux S, Petkov V 2010 J. Appl. Crystallogr. 43 181Google Scholar

    [43]

    Xiang X, Fan H, Zhou Y G 2024 J. Appl. Phys. 135 125102Google Scholar

    [44]

    Zhang S L, Yi S L, Yang J Y, Liu J, Liu L H 2023 Int. J. Heat Mass Tran. 207 123971Google Scholar

    [45]

    Panzer M A, Shandalov M, Rowlette J A, Oshima Y, Chen Y W, McIntyre P C, Goodson K E 2009 IEEE Electron Dev. Lett. 30 1269Google Scholar

    [46]

    Lee S M, Cahill D G, Allen T H 1995 Phys. Rev. B 52 253Google Scholar

    [47]

    Chaubey G S, Yao Y, Makongo J P, Sahoo P, Misra D, Poudeu P F, Wiley J B 2012 RSC Adv. 2 9207Google Scholar

    [48]

    Tritt T M 2005 Thermal Conductivity: Theory, Properties, and Applications (Springer Science & Business Media

    [49]

    Shenogin S, Bodapati A, Keblinski P, McGaughey A J 2009 J. Appl. Phys. 105 034906Google Scholar

    [50]

    Seyf H R, Henry A 2016 J. Appl. Phys. 120 025101Google Scholar

  • 图 1  生成非晶结构过程中势能和均方位移累计值随模拟时间的变化, 图中灰色虚线之前为熔融过程, 灰色虚线与黑色实线之间为在温度4000 K下的弛豫过程, 红色点划线之后为退火过程

    Figure 1.  Variation of potential energy and accumulated mean square displacement with simulation time during the generation of amorphous structures, the melting process is before the gray dashed line, the relaxation process at 4000 K is between the gray dashed line and the black solid line, and the annealing process is after the red dotted line.

    图 2  非晶HfO2在不同淬火速度下的(a)径向分布函数和(b)环数分布

    Figure 2.  (a) Radial distribution function and (b) ring distribution of amorphous HfO2 at different quenching rates.

    图 3  有限尺寸(2592个原子)和流体动力学外推法的非晶HfO2随温度变化的热导率, 图中图例的数值表示淬火速度, 误差棒为热导率标准差

    Figure 3.  Thermal conductivity of amorphous HfO2 with temperature for finite size (2592 atoms) and the hydrodynamic extrapolation. The values of the legend denote the quenching rate, error bar is standard deviations of thermal conductivity.

    图 4  非晶HfO2热导率随温度变化关系, 图中散点是Panzer等[45]、Lee等[46]、Scott等[10]和Chaubey等[47]报道的非晶HfO2实验数据

    Figure 4.  Temperature-dependent thermal conductivity of amorphous HfO2, scattered points in the figure are experimental data for amorphous HfO2 reported by Panzer et al.[45], Lee et al.[46], Scott et al.[10] and Chaubey et al.[47].

    图 5  300 K温度下不同淬火速度非晶HfO2 (a) 热容量; (b) 弛豫时间; (c) 模态扩散率; (d) 参与比

    Figure 5.  (a) Heat capacity; (b) lifetime; (c) modal diffusivity; (d) participation ratio of amorphous HfO2 with different quenching rates at 300 K.

    图 6  (a)—(e) 淬火速度分别为5×1012, 1×1012, 5×1011, 1×1011, 5×1010 K/s的非晶HfO2的纵向非谐动态结构因子; (f)—(j) 为对应淬火速度下的横向非谐动态结构因子; 图中颜色条是根据(8)式计算的非谐动态结构因子强度, 蓝色直线是非谐动态结构因子在低频部分的线性拟合, 红色虚线是选取的截止频率

    Figure 6.  (a)–(e) Longitudinal anharmonic dynamic structure factors of amorphous HfO2 with different quenching rates of 5×1012, 1×1012, 5×1011, 1×1011, and 5×1010 K/s; (f)–(j) transverse anharmonic dynamic structure factors at corresponding quenching rates. The colorbar indicates the strength of the anharmonic dynamic structure factor calculated by Eq. (8), the blue straight line is a linear fit of the anharmonic dynamic structure factor in the low frequency part, and the red dashed line is the selected cut-off frequency.

    图 7  300 K温度下不同淬火速度非晶HfO2的传播子和扩散子对热导率的贡献, 图中的蓝色文字代表传播子对总热导率的贡献百分比

    Figure 7.  Contributions of propagon and diffuson to thermal conductivity of amorphous HfO2 with different quenching rates at 300 K, the blue text in the figure represents the percentage contribution of propagon to the total thermal conductivity.

    Baidu
  • [1]

    Wilk G D, Wallace R M, Anthony J 2001 J. Appl. Phys. 89 5243Google Scholar

    [2]

    Chen J H, Liang M F, Song Y, Yuan J J, Zhang M Y, Luo Y M, Wang N N 2024 Chin. Phys. B 33 047503Google Scholar

    [3]

    Wang Y, Zahid F, Wang J, Guo H 2012 Phys. Rev. B 85 224110Google Scholar

    [4]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta. Phys. Sin. 72 097302Google Scholar

    [5]

    Gao R, Liu C, Shi B, Li Y, Luo B, Chen R, Ouyang W, Gao H, Hu S, Wang Y 2024 Chin. Phys. Lett. 41 087701Google Scholar

    [6]

    Chen S, Chen M, Liu Y, Cao D, Chen G 2024 Chin. Phys. B 33 098701Google Scholar

    [7]

    McKenna K, Shluger A, Iglesias V, Porti M, Nafría M, Lanza M, Bersuker G 2011 Microelectron. Eng. 88 1272Google Scholar

    [8]

    袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵 2023 72 097703Google Scholar

    Yuan G L, Wang C H, Tang W B, Zhang R, Lu X B 2023 Acta. Phys. Sin. 72 097703Google Scholar

    [9]

    Liu K, Liu K, Zhang X, Fang J, Jin F, Wu W, Ma C, Wang L 2024 Chin. Phys. Lett. 41 117701Google Scholar

    [10]

    Scott E A, Gaskins J T, King S W, Hopkins P E 2018 APL Mater. 6 058302Google Scholar

    [11]

    Lu S X, Cebe P 1996 Polymer 37 4857Google Scholar

    [12]

    何宇亮, 周衡南, 刘湘娜, 程光煦 1990 39 1796Google Scholar

    He Y L, Zhou H N, Liu X N, Cheng G X, Yu S D 1990 Acta Phys. Sin. 39 1796Google Scholar

    [13]

    Wang S, Wang C, Li M, Huang L, Ott R, Kramer M, Sordelet D, Ho K 2008 Phys. Rev. B 78 184204Google Scholar

    [14]

    Wang Y, Fan Z, Qian P, Caro M A, Ala-Nissila T 2023 Phys. Rev. B 107 054303Google Scholar

    [15]

    林揆训, 林璇英, 梁厚蕴, 池凌飞, 余楚迎, 黄创君 2002 51 863Google Scholar

    Lin K X, Lin X Y, Liang H Y, Chi L F, Yu C Y, Huang C J 2002 Acta. Phys. Sin. 51 863Google Scholar

    [16]

    Kittel C 1949 Phys. Rev. 75 972Google Scholar

    [17]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [18]

    Zhu X, Shao C 2022 Phys. Rev. B 106 014305Google Scholar

    [19]

    Qiu R, Zeng Q Y, Han J S, Chen K, Kang D D, Yu X X, Dai J Y 2025 Phys. Rev. B 111 064103Google Scholar

    [20]

    Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495Google Scholar

    [21]

    Li S H, Yu X X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [22]

    Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401Google Scholar

    [23]

    Prasai K, Biswas P, Drabold D 2016 Semicond. Sci. Techn. 31 073002Google Scholar

    [24]

    朱美芳 1996 45 499Google Scholar

    Zhu M F 1996 Acta Phys. Sin. 45 499Google Scholar

    [25]

    Mu X, Wu X, Zhang T, Go D B, Luo T 2014 Sci. Rep. 4 3909Google Scholar

    [26]

    王学智, 汤雨婷, 车军伟, 令狐佳珺, 侯兆阳 2023 72 056101Google Scholar

    Wang X Z, Tang Y T, Che J W, Linghu J J, Hou Z Y 2023 Acta Physica Sinica 72 056101Google Scholar

    [27]

    Yang F H, Zeng Q Y, Chen B, Kang D D, Zhang S, Wu J H, Yu X X, Dai J Y 2022 Chin. Phys. Lett. 39 116301Google Scholar

    [28]

    鲍华 2013 62 1Google Scholar

    Bao H 2013 Acta Phys. Sin. 62 1Google Scholar

    [29]

    Qiu R, Zeng Q Y, Wang H, Kang D D, Yu X X, Dai J Y 2023 Chin. Phys. Lett. 40 116301Google Scholar

    [30]

    Isaeva L, Barbalinardo G, Donadio D, Baroni S 2019 Nat. Commun. 10 3853Google Scholar

    [31]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [32]

    Harper A F, Iwanowski K, Witt W C, Payne M C, Simoncelli M 2024 Phys. Rev. Mater. 8 043601Google Scholar

    [33]

    Fiorentino A, Pegolo P, Baroni S 2023 npj Comput. Mater. 9 157Google Scholar

    [34]

    Barbalinardo G, Chen Z, Lundgren N W, Donadio D 2020 J. Appl. Phys. 128 135104Google Scholar

    [35]

    Fan Z Y, Wang Y Z, Ying P H, Song K K, Wang J J, Wang Y, Zeng Z Z, Xu K, Lindgren E, Rahm J M, Gabourie A J, Liu J H, Dong H K, Wu J Y, Chen Y, Zhong Z, Sun J, Erhart P, Su Y J, Ala-Nissila T 2022 J. Chem. Phys. 157 114801Google Scholar

    [36]

    Fan Z Y, Zeng Z Z, Zhang C Z, Wang Y Z, Song K K, Dong H K, Chen Y, Ala-Nissila T 2021 Phys. Rev. B 104 104309Google Scholar

    [37]

    Zhang H, Gu X, Fan Z, Bao H 2023 Phys. Rev. B 108 045422Google Scholar

    [38]

    Sivaraman G, Krishnamoorthy A N, Baur M, Holm C, Stan M, Csányi G, Benmore C, Vázquez-Mayagoitia Á 2020 npj Comput. Mater. 6 104Google Scholar

    [39]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [40]

    Zeng Q Y, Yu X X, Yao Y P, Gao T Y, Chen B, Zhang S, Kang D D, Wang H, Dai J Y 2021 Phys. Rev. Res. 3 033116Google Scholar

    [41]

    Franzblau D 1991 Phys. Rev. B 44 4925Google Scholar

    [42]

    Le Roux S, Petkov V 2010 J. Appl. Crystallogr. 43 181Google Scholar

    [43]

    Xiang X, Fan H, Zhou Y G 2024 J. Appl. Phys. 135 125102Google Scholar

    [44]

    Zhang S L, Yi S L, Yang J Y, Liu J, Liu L H 2023 Int. J. Heat Mass Tran. 207 123971Google Scholar

    [45]

    Panzer M A, Shandalov M, Rowlette J A, Oshima Y, Chen Y W, McIntyre P C, Goodson K E 2009 IEEE Electron Dev. Lett. 30 1269Google Scholar

    [46]

    Lee S M, Cahill D G, Allen T H 1995 Phys. Rev. B 52 253Google Scholar

    [47]

    Chaubey G S, Yao Y, Makongo J P, Sahoo P, Misra D, Poudeu P F, Wiley J B 2012 RSC Adv. 2 9207Google Scholar

    [48]

    Tritt T M 2005 Thermal Conductivity: Theory, Properties, and Applications (Springer Science & Business Media

    [49]

    Shenogin S, Bodapati A, Keblinski P, McGaughey A J 2009 J. Appl. Phys. 105 034906Google Scholar

    [50]

    Seyf H R, Henry A 2016 J. Appl. Phys. 120 025101Google Scholar

  • [1] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [3] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [4] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [5] Xu Wen-Xue, Liang Xin-Gang, Xu Xiang-Hua, Zhu Yuan. Molecular dynamics simulation of effect of crosslinking on thermal conductivity of silicone rubber. Acta Physica Sinica, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [6] Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin. Influence of grain size on the thermal conduction of nanocrystalline copper. Acta Physica Sinica, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [7] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [8] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [10] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [11] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [12] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [13] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [14] Bao Hua. Prediction of lattice thermal conductivity of solid argon from anharmonic lattice dynamics method. Acta Physica Sinica, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [15] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [16] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Wei, Yang Mu, Li Jing, Wang Ge. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15. Acta Physica Sinica, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [17] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [19] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [20] Wu Guo-Qiang, Kong Xian-Ren, Sun Zhao-Wei, Wang Ya-Hui. Molecular dynamics simulation on the out-of plane thermal conductivity of argon crystal thin films. Acta Physica Sinica, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
Metrics
  • Abstract views:  413
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2025
  • Accepted Date:  07 April 2025
  • Available Online:  14 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map