Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios

Yan Song-Ling Tang Li-Ming Zhao Yu-Qing

Citation:

First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios

Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using first-principles calculations based on density functional theory and projector augmented wave method, we investigate the thickness ratio dependences of the ionic relaxation, electronic structure, and magnetism of (LaMnO3)n/(SrTiO3)m heterostructure. Polar and nonpolar oxide interfaces have become a hot point of research in condensed matter physics; in this system, polar discontinuity at the interface may cause charge transfer to occur at interfaces between Mott and band insulating perovskites. Here, we consider two types of interfaces, namely n-type (LaO)+/(TiO2)0 and p-type (MnO2)-/(SrO)0 interfaces. The results show that the different thickness ratios and interface-types lead to different degrees of ionic relaxation, inducing charges of different concentrations to transfer. The distortions of the oxygen octahedra are found to vary distinctly with the component thickness ratio (n:m), which is consistent with recent experimental results. Furthermore, both n and m are found to strongly affect the charge transfer. When the thickness of LaMnO3 reaches a thickness of critical layers of 6 unit cells, the Mn-eg electrons are transferred to the Ti-dxy orbitals of SrTiO3, which is caused by the interface polar discontinuity. Two-dimensional electron gas with high mobility is formed in an n-type (LaMnO3)n/(SrTiO3)2 interface region. Meanwhile, spin polarization of interface-layer Ti atoms becomes more obvious, which induces Ti magnetic moment to be close to 0.05B. We find that Mn magnetic moment of 3.9B is a larger value at the n-type interface than at the p-type interface. The above studied heterostructure favours ferromagnetic spin ordering rather than the A-type antiferromagnetic spin ordering of bulk LaMnO3. Whether n-type or p-type (LaMnO3)2/(SrTiO3)8 interfaces consist of ultrathin LaMnO3 layer and thicker SrTiO3 layer, there is no structure distortion at the side of SrTiO3 basically, which is in agreement with experimental results. Stronger interface-layer polar distortions for p-type interface prevent the electron transfer from occurring, and spin polarization of Ti cannot occur either. In addition, it is found that the two types of interfaces possess 2 eV potential difference by comparing the average electrostatic potential, thus charge transfer is more difficult to occur in the p-type interface than in the n-type interface.
      Corresponding author: Tang Li-Ming, lmtang@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347022).
    [1]

    Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762

    [2]

    Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646

    [3]

    Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 64 067501]

    [4]

    Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 64 227303]

    [6]

    Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694

    [7]

    Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207

    [8]

    Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018

    [9]

    Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108

    [10]

    Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108

    [11]

    Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423

    [12]

    Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804

    [13]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [14]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [15]

    Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886

    [16]

    Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825

    [17]

    Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156

    [18]

    Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080

    [19]

    Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401

    [20]

    Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902

    [21]

    Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283

    [22]

    Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301

    [23]

    Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865

    [26]

    Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674

    [29]

    Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104

    [30]

    Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101

    [31]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [32]

    Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778

    [33]

    Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627

    [34]

    Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113

    [35]

    Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552

    [36]

    Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428

  • [1]

    Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762

    [2]

    Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646

    [3]

    Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 64 067501]

    [4]

    Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 64 227303]

    [6]

    Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694

    [7]

    Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207

    [8]

    Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018

    [9]

    Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108

    [10]

    Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108

    [11]

    Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423

    [12]

    Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804

    [13]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [14]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [15]

    Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886

    [16]

    Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825

    [17]

    Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156

    [18]

    Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080

    [19]

    Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401

    [20]

    Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902

    [21]

    Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283

    [22]

    Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301

    [23]

    Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865

    [26]

    Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674

    [29]

    Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104

    [30]

    Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101

    [31]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [32]

    Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778

    [33]

    Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627

    [34]

    Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113

    [35]

    Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552

    [36]

    Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [6] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study of the electronic structures and absorption spectrum of Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [7] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] Zhou Shu-Lan, Zhao Xian, Jiang Xiang-Ping, Han Xiao-Dong. Electronic structures and phase instabilities of cubic Na1/2Bi1/2TiO3 and K1/2Bi1/2TiO3: a first-principles comparative study. Acta Physica Sinica, 2014, 63(16): 167101. doi: 10.7498/aps.63.167101
    [9] Deng Jiao-Jiao, Liu Bo, Gu Mu. First-principles study of LuI3 scintillator. Acta Physica Sinica, 2013, 62(6): 063101. doi: 10.7498/aps.62.063101
    [10] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [11] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [12] Zhou Jing, Liu Cun-Jin, Li Ru, Chen Wen. Effects of heterogeneous interfaces on microstructure and dielectric properties of Ca(Mg1/3Nb2/3)O3/CaTiO3 multilayered thin films. Acta Physica Sinica, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [13] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] Li Ai-Hong, Mu Yan-Qing, Yang Wei-Ming, Hou Hua, Han Pei-De, Zhang Su-Ying, Huang Zhi-Wei, Zhao Yu-Hong. First principles study on substitution behavior and alloying effects of Nb in Ni3Al. Acta Physica Sinica, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [15] Liu Feng-Li, Jiang Gang, Bai Li-Na, Kong Fan-Jie. First-principles study on the electronic structures of diadochic compounds Bi2Te3- x Sex(x ≤3). Acta Physica Sinica, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [16] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [17] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [19] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  7405
  • PDF Downloads:  311
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2015
  • Accepted Date:  21 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map