-
Using first-principles calculations based on density functional theory and projector augmented wave method, we investigate the thickness ratio dependences of the ionic relaxation, electronic structure, and magnetism of (LaMnO3)n/(SrTiO3)m heterostructure. Polar and nonpolar oxide interfaces have become a hot point of research in condensed matter physics; in this system, polar discontinuity at the interface may cause charge transfer to occur at interfaces between Mott and band insulating perovskites. Here, we consider two types of interfaces, namely n-type (LaO)+/(TiO2)0 and p-type (MnO2)-/(SrO)0 interfaces. The results show that the different thickness ratios and interface-types lead to different degrees of ionic relaxation, inducing charges of different concentrations to transfer. The distortions of the oxygen octahedra are found to vary distinctly with the component thickness ratio (n:m), which is consistent with recent experimental results. Furthermore, both n and m are found to strongly affect the charge transfer. When the thickness of LaMnO3 reaches a thickness of critical layers of 6 unit cells, the Mn-eg electrons are transferred to the Ti-dxy orbitals of SrTiO3, which is caused by the interface polar discontinuity. Two-dimensional electron gas with high mobility is formed in an n-type (LaMnO3)n/(SrTiO3)2 interface region. Meanwhile, spin polarization of interface-layer Ti atoms becomes more obvious, which induces Ti magnetic moment to be close to 0.05B. We find that Mn magnetic moment of 3.9B is a larger value at the n-type interface than at the p-type interface. The above studied heterostructure favours ferromagnetic spin ordering rather than the A-type antiferromagnetic spin ordering of bulk LaMnO3. Whether n-type or p-type (LaMnO3)2/(SrTiO3)8 interfaces consist of ultrathin LaMnO3 layer and thicker SrTiO3 layer, there is no structure distortion at the side of SrTiO3 basically, which is in agreement with experimental results. Stronger interface-layer polar distortions for p-type interface prevent the electron transfer from occurring, and spin polarization of Ti cannot occur either. In addition, it is found that the two types of interfaces possess 2 eV potential difference by comparing the average electrostatic potential, thus charge transfer is more difficult to occur in the p-type interface than in the n-type interface.
-
Keywords:
- LaMnO3/SrTiO3 /
- electronic structure /
- heterointerface /
- first-principles
[1] Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762
[2] Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646
[3] Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 64 067501]
[4] Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378
[5] Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 64 227303]
[6] Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694
[7] Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207
[8] Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018
[9] Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108
[10] Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108
[11] Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423
[12] Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804
[13] Tokura Y, Nagaosa N 2000 Science 288 462
[14] Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602
[15] Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886
[16] Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825
[17] Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156
[18] Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080
[19] Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401
[20] Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902
[21] Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283
[22] Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301
[23] Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865
[26] Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953
[27] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[28] Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674
[29] Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104
[30] Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101
[31] Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106
[32] Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778
[33] Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627
[34] Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113
[35] Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552
[36] Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428
-
[1] Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762
[2] Yamada H, Ogawa Y, Ishii Y 2004 Science 305 646
[3] Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 64 067501]
[4] Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378
[5] Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 64 227303]
[6] Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694
[7] Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 Phys. Rev. Lett. 109 127207
[8] Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018
[9] Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108
[10] Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108
[11] Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423
[12] Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804
[13] Tokura Y, Nagaosa N 2000 Science 288 462
[14] Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602
[15] Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886
[16] Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825
[17] Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156
[18] Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080
[19] Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401
[20] Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902
[21] Zhai X F, Cheng L, Liu Y, Schlepz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283
[22] Du Y L, Wang C L, Li J C 2015 Chin. Phys. B 24 037301
[23] Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302
[24] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. B 77 3865
[26] Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953
[27] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[28] Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674
[29] Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104
[30] Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101
[31] Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106
[32] Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778
[33] Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627
[34] Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113
[35] Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552
[36] Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428
Catalog
Metrics
- Abstract views: 7405
- PDF Downloads: 311
- Cited By: 0