Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of spin-orbit torques in rare-earth Dy/Pt/[Co/Pt]3 magnetic multilayers

LI Dong LAI Yanping LIU Xiyue

Citation:

Investigation of spin-orbit torques in rare-earth Dy/Pt/[Co/Pt]3 magnetic multilayers

LI Dong, LAI Yanping, LIU Xiyue
cstr: 32037.14.aps.74.20250186
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Spin-orbit torque (SOT) based on the spin-orbit coupling (SOC) effect has received increasing attention in magnetic information storage, logical operation and neuron simulation devices because it can effectively manipulate magnetization switching, chiral magnetic domain walls, and magnetic skyrmion motions. Further improvement of the SOT efficiency and reduction of the driving current density are crucial scientific problems to be solved for high-density and low-power applications of SOT-based spintronic devices. The heavy rare-earth metal dysprosium (Dy) possesses a relatively strong SOC due to the partially filled f orbital electrons (4f10), which is expected to generate spin Hall torques. In this work, the influences of Dy thickness on the SOT efficiency and SOT-driven magnetic reversal are explored in the Dy/Pt/[Co/Pt]3 magnetic multilayers, where the rare-earth Dy and [Co/Pt]3 are used as a spin-source layer and a perpendicularly magnetized ferromagnetic layer, respectively. A series of Dy/Pt/[Co/Pt]3 heterostructures with the values of Dy layer thickness (tDy) of 1, 3, 5 and 7 nm is fabricated by ultrahigh-vacuum magnetron sputtering. The perpendicular magnetic anisotropy, SOT efficiency, spin Hall angle and current-induced magnetization switching are characterized using the magnetic property and electrical transport measurements. The results show that the switching field and magnetic anisotropic field decrease with the increase of tDy, revealing that the magnetic parameters can be regulated by the bottom Dy layer due to their structural sensitivity. However, both damping-like SOT efficiency and effective spin Hall angle ($\theta _{{\text{SH}}}^{{\text{eff}}} $) gradually increase with the increase of tDy, indicating that the rare-earth Dy can provide additional spin current to enhance the SOT efficiency apart from the contribution of Pt/[Co/Pt]3. Particularly, the maximum value of $\theta _{{\text{SH}}}^{{\text{eff}}} $ of 0.379±0.008 is achieved when tDy is 7 nm. According to the fitting analysis of the drift-diffusion model, the intrinsic spin Hall angle and spin diffusion length of the rare-earth Dy are extracted to be 0.260±0.039 and (2.234±0.383) nm, respectively, suggesting that Dy can be used as an ideal spin-source material. In addition, the critical switching current density (Jc) gradually decreases with the increase of tDy, and Jc reaches a minimum value of approximately 5.3×106 A/cm2 at tDy = 7 nm, which is mainly attributed to the increase of the damping-like SOT and slight decrease of the switching field. These results experimentally demonstrate a strong spin Hall effect of the rare-earth Dy, and provide a feasible route for designing SOT-based spintronic devices with low-power dissipation.
      Corresponding author: LI Dong, lidong@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52001190) and the Fundamental Research Program of Shanxi Province, China (Grant No. 202303021221151).
    [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [2]

    Tudu B, Tiwari A 2017 Vacuum 146 329Google Scholar

    [3]

    Garello K, Avci C O, Miron I M, Baumgartner M, Ghosh A, Auffret S, Boulle O, Gaudin G, Gambardella P 2014 Appl. Phys. Lett. 105 212402Google Scholar

    [4]

    Resnati D, Goda A, Nicosia G, Miccoli C, Spinelli A S, Compagnoni C M 2017 IEEE Electron Device Lett. 38 461Google Scholar

    [5]

    Yu G Q 2018 Nat. Electronics. 1 496Google Scholar

    [6]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M 2018 IEEE Trans. Magn. 54 81Google Scholar

    [7]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [8]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611Google Scholar

    [9]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [10]

    Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L, Jiang W J 2022 Chin. Phys. Lett. 39 017501Google Scholar

    [11]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028Google Scholar

    [12]

    Li L Y, Chen L N, Liu R H, Du Y W 2020 Chin. Phys. B 29 117102Google Scholar

    [13]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [14]

    Pai C F, Ou Y, Henrique L, Vilela-Leão L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [15]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [16]

    Haney P M, Lee H W, Lee K J, Manchon A, Stiles M D 2013 Phys. Rev. B 87 174411Google Scholar

    [17]

    Rojas-Sánchez J C, Reyren N, Laczkowski P, Savero W, Attané J P, Deranlot C, Jamet M, George J M, Vila L, Jaffrès H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [18]

    Zhang W, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496Google Scholar

    [19]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601Google Scholar

    [20]

    Zhang C, Fukami S, Watanabe K, Ohkawara A, Gupta S D, Sato H, Matsukura F, Ohno H 2016 Appl. Phys. Lett. 109 192405Google Scholar

    [21]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [22]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K, Zhao W S 2020 Chin. Phys. B 29 078505Google Scholar

    [23]

    Lü W, Jia Z, Wang B, Lu Y, Luo X, Zhang B, Zeng Z, Liu Z 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [24]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [25]

    Wang F, Shi G Y, Kim K W, Park H J, Jang J G, Tan H R, Lin M, Liu Y K, Kim T, Yang D S, Zhao S S, Lee K, Yang S H, Soumyanarayanan A, Lee K J, Yang H 2024 Nat. Mater. 23 768Google Scholar

    [26]

    魏陆军, 李阳辉, 普勇 2024 73 018501Google Scholar

    Wei L J, Li Y H, Pu Y 2024 Acta Phys. Sin. 73 018501Google Scholar

    [27]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [28]

    Liu Q B, Li J W, Zhu L J, Lin X, Xie X Y, Zhu L J 2022 Phys. Rev. Appl. 18 054079Google Scholar

    [29]

    Zhu L J, Ralph D C, Buhrman R A 2018 Phys. Rev. Appl. 10 031001Google Scholar

    [30]

    Reynolds N, Jadaun P, Heron J T, Jermain C L, Gibbons J, Collette R, Buhrman R A, Schlom D G, Ralph D C 2017 Phys. Rev. B 95 064412Google Scholar

    [31]

    Ueda K, Pai C F, Tan A J, Mann M, Beach G S D 2016 Appl. Phys. Lett. 108 232405Google Scholar

    [32]

    Wong Q Y, Murapaka C, Law W C, Gan W L, Lim G J, Lew W S 2019 Phys. Rev. Appl. 11 024057Google Scholar

    [33]

    Jin T L, Law W C, Kumar D, Luo F L, Wong Q Y, Lim G J, Wang X, Lew W S, Piramanayagam S N 2020 APL Mater. 8 111111Google Scholar

    [34]

    Li D, Li M R, Lai Y P, Zhang W, Liu X Y, Quan Z Y, Xu X H 2024 Appl. Phys. Lett. 125 152403Google Scholar

    [35]

    Takeuchi Y, Zhang C L, Okada A, Sato H, Fukami S, Ohno H 2018 Appl. Phys. Lett. 112 192408Google Scholar

    [36]

    Li D, Ma R, Cui B S, Yun J J, Quan Z Y, Zuo Y L, Xi L, Xu X H 2020 Appl. Surf. Sci. 513 145768Google Scholar

    [37]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [38]

    Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H 2014 Nat. Commun. 5 4655Google Scholar

    [39]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425Google Scholar

    [40]

    Li D, Chen S W, Zuo Y L, Yun J J, Cui B S, Wu K, Guo X B, Yang D Z, Wang J B, Xi L 2018 Sci. Rep. 8 12959Google Scholar

    [41]

    Wu D, Yu G Q, Chen C T, Razavi S A, Shao Q M, Li X, Zhao B C, Wong K L, He C L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 222401Google Scholar

    [42]

    Yu J W, Qiu X P, Legrand W, Yang H 2016 Appl. Phys. Lett. 109 042403Google Scholar

    [43]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [44]

    Wang X R, Meng A, Yao Y X, Lin F Y, Bai Y, Ning X B, Li B, Zhang Y, Nie T X, Shi S, Zhao W S 2024 Nano Lett. 24 6931Google Scholar

  • 图 1  (a) Dy/Pt/[Co/Pt]3多层膜的结构示意图; (b)霍尔器件的光学显微图像和电输运测量示意图; (c)不同Dy厚度样品的反常霍尔曲线, 测试电流为1 mA, 插图为t = 7 nm样品的面内磁滞回线; (d)饱和磁化强度、翻转场和磁各向异性常数随Dy层厚度的变化关系

    Figure 1.  (a) Schematic diagram of a Dy/Pt/[Co/Pt]3 stack; (b) optical image of the Hall device accompanied by a schematic measurement setup; (c) anomalous Hall loops for stacks with varying Dy layer thicknesses measured at I = 1 mA, and the inset presents the in-plane magnetic hysteresis loop for the stack with t = 7 nm; (d) dependence of Ms, Hsw, and Ku on Dy layer thickness.

    图 2  类阻尼(a)和类场(b)有效场的测量示意图; 一阶谐波电压(V ω)和二阶谐波电压(V 2ω)随面内纵向扫描磁场HL (c)和横向扫描磁场HT (d)的变化关系

    Figure 2.  Schematic measurement setups of damping-like (a) and field-like (b) effective fields; representative first (V ω) and second (V 2ω) harmonic voltages as functions of in-plane longitudinal magnetic field HL (c) and transverse magnetic field HT (d).

    图 3  (a)平面霍尔电阻随方位角ϕ的变化关系; 平面霍尔效应修正的类阻尼有效场(b)和类场有效场(c)随正弦电流幅值I0的依赖关系

    Figure 3.  (a) Dependence of the planar Hall resistance on the azimuthal angle ϕ for stacks with different Dy layer thicknesses; Calibrated damping-like (b) and field-like (c) effective fields against the amplitude of the input sinusoidal current by considering the planar Hall effect.

    图 4  类阻尼SOT效率(a)、类场SOT效率(b)和有效自旋霍尔角(c)随Dy层厚度的变化关系

    Figure 4.  Damping-like SOT efficiency (a), field-like SOT efficiency (b), and effective spin Hall angle (c) as a function of Dy layer thickness.

    图 5  (a) t = 7 nm样品在不同面内辅助场Hx的电流驱动磁矩翻转回线; (b)不同Dy层厚度样品在Hx = +600 Oe的电流驱动磁矩翻转回线; (c)不同Dy层厚度样品的电流驱动磁矩翻转相图; (d) Hx = +600 Oe时Dy/Pt/[Co/Pt]3, Pt/[Co/Pt]3和Dy层中临界翻转电流密度以及翻转效率随Dy层厚度的变化关系

    Figure 5.  (a) Current-driven magnetization switching loops for the stack with t = 7 nm under various in-plane bias magnetic fields; (b) current-driven magnetization switching loops for stacks with different Dy layer thicknesses under Hx = +600 Oe; (c) switching phase diagram for stacks with different Dy layer thicknesses; (d) dependence of the critical switching current density in the Dy/Pt/[Co/Pt]3, Pt/[Co/Pt]3 and Dy layers as well as the switching efficiency on Dy layer thickness under Hx = +600 Oe.

    Baidu
  • [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [2]

    Tudu B, Tiwari A 2017 Vacuum 146 329Google Scholar

    [3]

    Garello K, Avci C O, Miron I M, Baumgartner M, Ghosh A, Auffret S, Boulle O, Gaudin G, Gambardella P 2014 Appl. Phys. Lett. 105 212402Google Scholar

    [4]

    Resnati D, Goda A, Nicosia G, Miccoli C, Spinelli A S, Compagnoni C M 2017 IEEE Electron Device Lett. 38 461Google Scholar

    [5]

    Yu G Q 2018 Nat. Electronics. 1 496Google Scholar

    [6]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M 2018 IEEE Trans. Magn. 54 81Google Scholar

    [7]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [8]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611Google Scholar

    [9]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [10]

    Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L, Jiang W J 2022 Chin. Phys. Lett. 39 017501Google Scholar

    [11]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028Google Scholar

    [12]

    Li L Y, Chen L N, Liu R H, Du Y W 2020 Chin. Phys. B 29 117102Google Scholar

    [13]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [14]

    Pai C F, Ou Y, Henrique L, Vilela-Leão L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426Google Scholar

    [15]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [16]

    Haney P M, Lee H W, Lee K J, Manchon A, Stiles M D 2013 Phys. Rev. B 87 174411Google Scholar

    [17]

    Rojas-Sánchez J C, Reyren N, Laczkowski P, Savero W, Attané J P, Deranlot C, Jamet M, George J M, Vila L, Jaffrès H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [18]

    Zhang W, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496Google Scholar

    [19]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601Google Scholar

    [20]

    Zhang C, Fukami S, Watanabe K, Ohkawara A, Gupta S D, Sato H, Matsukura F, Ohno H 2016 Appl. Phys. Lett. 109 192405Google Scholar

    [21]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [22]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K, Zhao W S 2020 Chin. Phys. B 29 078505Google Scholar

    [23]

    Lü W, Jia Z, Wang B, Lu Y, Luo X, Zhang B, Zeng Z, Liu Z 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [24]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [25]

    Wang F, Shi G Y, Kim K W, Park H J, Jang J G, Tan H R, Lin M, Liu Y K, Kim T, Yang D S, Zhao S S, Lee K, Yang S H, Soumyanarayanan A, Lee K J, Yang H 2024 Nat. Mater. 23 768Google Scholar

    [26]

    魏陆军, 李阳辉, 普勇 2024 73 018501Google Scholar

    Wei L J, Li Y H, Pu Y 2024 Acta Phys. Sin. 73 018501Google Scholar

    [27]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [28]

    Liu Q B, Li J W, Zhu L J, Lin X, Xie X Y, Zhu L J 2022 Phys. Rev. Appl. 18 054079Google Scholar

    [29]

    Zhu L J, Ralph D C, Buhrman R A 2018 Phys. Rev. Appl. 10 031001Google Scholar

    [30]

    Reynolds N, Jadaun P, Heron J T, Jermain C L, Gibbons J, Collette R, Buhrman R A, Schlom D G, Ralph D C 2017 Phys. Rev. B 95 064412Google Scholar

    [31]

    Ueda K, Pai C F, Tan A J, Mann M, Beach G S D 2016 Appl. Phys. Lett. 108 232405Google Scholar

    [32]

    Wong Q Y, Murapaka C, Law W C, Gan W L, Lim G J, Lew W S 2019 Phys. Rev. Appl. 11 024057Google Scholar

    [33]

    Jin T L, Law W C, Kumar D, Luo F L, Wong Q Y, Lim G J, Wang X, Lew W S, Piramanayagam S N 2020 APL Mater. 8 111111Google Scholar

    [34]

    Li D, Li M R, Lai Y P, Zhang W, Liu X Y, Quan Z Y, Xu X H 2024 Appl. Phys. Lett. 125 152403Google Scholar

    [35]

    Takeuchi Y, Zhang C L, Okada A, Sato H, Fukami S, Ohno H 2018 Appl. Phys. Lett. 112 192408Google Scholar

    [36]

    Li D, Ma R, Cui B S, Yun J J, Quan Z Y, Zuo Y L, Xi L, Xu X H 2020 Appl. Surf. Sci. 513 145768Google Scholar

    [37]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [38]

    Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H 2014 Nat. Commun. 5 4655Google Scholar

    [39]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425Google Scholar

    [40]

    Li D, Chen S W, Zuo Y L, Yun J J, Cui B S, Wu K, Guo X B, Yang D Z, Wang J B, Xi L 2018 Sci. Rep. 8 12959Google Scholar

    [41]

    Wu D, Yu G Q, Chen C T, Razavi S A, Shao Q M, Li X, Zhao B C, Wong K L, He C L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 222401Google Scholar

    [42]

    Yu J W, Qiu X P, Legrand W, Yang H 2016 Appl. Phys. Lett. 109 042403Google Scholar

    [43]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [44]

    Wang X R, Meng A, Yao Y X, Lin F Y, Bai Y, Ning X B, Li B, Zhang Y, Nie T X, Shi S, Zhao W S 2024 Nano Lett. 24 6931Google Scholar

  • [1] He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue. Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface. Acta Physica Sinica, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [3] Wang Ke-Xin, Su Li, Tong Liang-Le. Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism. Acta Physica Sinica, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [4] Liu Jun-Hang, Zhu Zhao-Zhao, Bi Lin-zhu, Wang Peng-Ju, Cai Jian-Wang. Magnetic properties and thermal stability of ultrathin TbFeCo films encapsulated by heavy metals Pt and W. Acta Physica Sinica, 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [5] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [6] Yang Meng, Bai He, Li Gang, Zhu Zhao-Zhao, Zhu Yun, Su Jian, Cai Jian-Wang. Epitaxial growth of Ho3Fe5O12 films with perpendicular magnetic anisotropy and spin transport properties in Ho3Fe5O12/Pt heterostructures. Acta Physica Sinica, 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [7] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [8] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [9] Ju Hai-Lang, Wang Hong-Xin, Cheng Peng, Li Bao-He, Chen Xiao-Bai, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy study of CoFeB/Ni multilayers by anomalous Hall effect. Acta Physica Sinica, 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [10] Yu Tao, Liu Yi, Zhu Zheng-Yong, Zhong Hui-Cai, Zhu Kai-Gui, Gou Cheng-Ling. Influence of Mo capping layer on magnetic anisotropy of MgO/CoFeB/Mo. Acta Physica Sinica, 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [11] Ju Hai-Lang, Xiang Ping-Ping, Wang Wei, Li Bao-He. Enhancement of perpendicular magnetic anisotropy and thermal stability in Co/Ni multilayers by MgO/Pt interfaces. Acta Physica Sinica, 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [12] Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua. Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect. Acta Physica Sinica, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [13] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [14] Chen Xi, Liu Hou-Fang, Han Xiu-Feng, Ji Yang. The research of the perpendicular magnetic anisotropy in CoFeB/AlOx/Ta and AlOx/CoFeB/Ta structures. Acta Physica Sinica, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [15] Zhu Yun, Han Na. Research on enhanced perpendicular magnetic anisotropy in CoFe/Pd bilayer structure. Acta Physica Sinica, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [16] Liu Na, Wang Hai, Zhu Tao. Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect. Acta Physica Sinica, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [17] Fu Yan-Qiang, Liu Yang, Jin Chuan, Yu Guang-Hua. Effect of Pt spacers on the interface of Co/FeMn. Acta Physica Sinica, 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [18] Feng Chun, Zhan Qian, Li Bao-He, Teng Jiao, Li Ming-Hua, Jiang Yong, Yu Guang-Hua. Preparation of L10-FePt film for perpendicular magnetic recording media by using FePt/Au mutilayers. Acta Physica Sinica, 2009, 58(5): 3503-3508. doi: 10.7498/aps.58.3503
    [19] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [20] Hwang Pol, Li Bao-He, Yang Tao, Zhai Zhong-Hai, Zhu Feng-Wu. Correlation among magnetic properties, perpendicular magnetic recording properti es and microstructure of[Co8585Cr1515/Pt]2020 multilayers. Acta Physica Sinica, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
Metrics
  • Abstract views:  396
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2025
  • Accepted Date:  24 March 2025
  • Available Online:  06 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回
    Baidu
    map