-
采用直流磁控溅射法在玻璃基片上制备了Pt底层和MgO/Pt双底层的Co/Ni多层膜样品, 通过反常霍尔效应研究了不同MgO厚度和退火温度对样品垂直磁各向异性(perpendicular magnetic anisotropy, PMA)的影响. 随着底层中MgO厚度的逐渐增加, 样品的矫顽力也随之增强, 霍尔电阻变化不大; 对样品进行退火处理后发现, 单纯Pt底层的Co/Ni多层膜随着退火温度的升高, 霍尔电阻逐渐降低, 矫顽力则迅速降低, 热稳定性较差; 而当MgO/Pt双底层的样品在200 ℃退火后矫顽力大幅增加, 霍尔电阻略微有所减小, 更高的退火温度使得Co和Ni合金化, 导致多层膜的PMA特征减弱.Co/Ni multilayers with Pt and MgO/Pt underlayer have been grown by means of magnetron sputtering and the perpendicular magnetic anisotropy (PMA) of the samples is studied using anomalous Hall effect (AHE). The Co/Ni multilayer has to be thermally stable to stabilize the PMA, which is studied by annealing treatment. In early researches of Co/Ni multilayes, the optimum sample with Pt underlayer was obtained as Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) with PMA in good performance. Thermal stability of the sample is studied in this paper by the Hall loop measurement of it after annealing. Results show that the remanence ratio and rectangular degree of the sample are kept well and the Hall resistance (RHall) has little change at the annealing temperature of 100 ℃. As the annealing temperature rising above 100 ℃, the PMA of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) becomes weakened. Its coercivity (Hc) decreases rapidly and RHall reduces greatly. So the thermal stability of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) will be poor and the PMA cannot be enhanced by annealing treatment. A series of samples with MgO/Pt underlayer are prepared with the thickness of Pt being fixed at 2 nm and that of MgO ranging from 1 to 5 nm. Thus the interface between amorphous insulation layer and metal layer is added to be used to enhance the PMA of the sample for the strong electron additive scattering. Magnetization reversal can be very rapid and the rectangular degree is kept very well, and furthermore, the remanence ratio of the samples can reach 100% so they all show good PMA.The Hc increases with increasing MgO underlayer and reaches the maximum value as the MgO thickness arrives at 4 nm, and the Hc of the sample MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is 2.3 times that of Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm), the RHall is up to 9% correspondingly. The roughnesses of Pt(2 nm)/Co(0.2 nm)/ Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) and MgO(4 nm)/Pt(2 nm)/Co(0.2 nm) /Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) are 0.192 nm and 0.115 nm respectively, as tested by AFM. Result shows that the roughness of the Co/Ni multilayer is greatly reduced so the PMA of the Co/Ni multilayer is enhanced remarkably after the addition of 4 nm MgO. The thermal stability of MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is also studied. When the annealing temperature rises up to 200 ℃, the Hc reaches its maximum value i.e. 1.5 times that of the sample without MgO, and it is 3.5 times that of the sample with Pt underlayer only. This sample also show good thermal stability. Higher temperatures will result in intermixing of Co and Ni and diminish the PMA. After annealing at 400 ℃, the easy axis of the sample becomes in-plane. The anisotropy constant Keff of MgO(4 nm)/Pt(2 nm)/Co(0.2 nm)/Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm) is 8.2106 erg/cm3, and it has an increase of 15% in Pt(2 nm)/Co(0.2 nm)/ Ni(0.4 nm)/Co(0.2 nm)/Pt(2 nm), which shows that the sample has an excellent PMA.
[1] Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201(in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李建英 2015 64 137201]
[2] Kim D S, Jung K Y, Sung J J, Young J J, Hong J K, Lee B C, You C Y, Cho J H, Kim M Y, Rhie K 2015 J. M. M. M. 374 350
[3] Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502
[4] Zhu T 2014 Chin. Phys. B 23 047504
[5] Ding J J, Wu S B, Yang X F Zhu T 2015 Chin. Phys. B 24 027201
[6] Johnson M T, Bloemen P J H, denBroeder F J A, deVries J J 1996 Rep. Prog. Phys. 59 1409
[7] Ravelosona D, Lacour D, Katine J A, Terris B D, Chappert C 2005 Phys. Rev. Lett. 95 117203
[8] Ravelosona D, Mangin S, Katine J A, Fullerton E E, Terris B D 2007 Appl. Phys. Lett. 90 072508
[9] Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H 2011 Appl. Phys. Lett. 98 082504
[10] Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601(in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 63 217601]
[11] Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404
[12] Zhang Y, Zhao W S, Klein J O, Chappert C, Ravelosona D 2014 Appl. Phys. Lett. 104 032409
[13] Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410
[14] Manchon A, Ducruet C, Lombard L, Auffret S, Rodmacq B, Dien B y, Pizzini S, Vogel J, Uhlir V, Hochstrasser M, Panaccione G 2008 J. Appl. Phys. 104 043914
[15] Ding L, Teng J, Wang X C, Feng C, Jiang Y, Yu G H, Wang S G, Ward R C C 2010 Appl. Phys. Lett. 96 052515
[16] Zhang S L, Teng J, Zhang J Y, Liu Y, Li J W, Yu G H, Wang S G 2010 Appl. Phys. Lett. 97 222504
[17] Yang E, Vincent M S, Matthew T M, David M B, Zhu J G 2013 J. Appl. Phys. 113 17C116
[18] McGuire T R, Gambino R J, Handley R C O, The Hall Effect, Its Applications (Vol. 1) (New York: Plenum Publishing Corp.), 137, 1980
[19] Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508
[20] Ju H L, Li B H, Wu Z F, Zhang F, Liu S, Yu G H 2015 Acta Phys. Sin. 64 097501(in Chinese) [俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华 2015 64 097501]
[21] Young W O, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724
-
[1] Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201(in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李建英 2015 64 137201]
[2] Kim D S, Jung K Y, Sung J J, Young J J, Hong J K, Lee B C, You C Y, Cho J H, Kim M Y, Rhie K 2015 J. M. M. M. 374 350
[3] Mangin S, Henry Y, Ravelosona D, Katine J A, Fullerton E E 2009 Appl. Phys. Lett. 94 012502
[4] Zhu T 2014 Chin. Phys. B 23 047504
[5] Ding J J, Wu S B, Yang X F Zhu T 2015 Chin. Phys. B 24 027201
[6] Johnson M T, Bloemen P J H, denBroeder F J A, deVries J J 1996 Rep. Prog. Phys. 59 1409
[7] Ravelosona D, Lacour D, Katine J A, Terris B D, Chappert C 2005 Phys. Rev. Lett. 95 117203
[8] Ravelosona D, Mangin S, Katine J A, Fullerton E E, Terris B D 2007 Appl. Phys. Lett. 90 072508
[9] Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H 2011 Appl. Phys. Lett. 98 082504
[10] Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601(in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 63 217601]
[11] Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404
[12] Zhang Y, Zhao W S, Klein J O, Chappert C, Ravelosona D 2014 Appl. Phys. Lett. 104 032409
[13] Ryzhanova N, Vedyayev A, Pertsova A, Dieny B 2009 Phys. Rev. B 80 024410
[14] Manchon A, Ducruet C, Lombard L, Auffret S, Rodmacq B, Dien B y, Pizzini S, Vogel J, Uhlir V, Hochstrasser M, Panaccione G 2008 J. Appl. Phys. 104 043914
[15] Ding L, Teng J, Wang X C, Feng C, Jiang Y, Yu G H, Wang S G, Ward R C C 2010 Appl. Phys. Lett. 96 052515
[16] Zhang S L, Teng J, Zhang J Y, Liu Y, Li J W, Yu G H, Wang S G 2010 Appl. Phys. Lett. 97 222504
[17] Yang E, Vincent M S, Matthew T M, David M B, Zhu J G 2013 J. Appl. Phys. 113 17C116
[18] McGuire T R, Gambino R J, Handley R C O, The Hall Effect, Its Applications (Vol. 1) (New York: Plenum Publishing Corp.), 137, 1980
[19] Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508
[20] Ju H L, Li B H, Wu Z F, Zhang F, Liu S, Yu G H 2015 Acta Phys. Sin. 64 097501(in Chinese) [俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华 2015 64 097501]
[21] Young W O, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724
计量
- 文章访问数: 6330
- PDF下载量: 158
- 被引次数: 0