Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The magnetization reversal driven by spin-orbit-assisted spin-transfer torque

Wang Ri-Xing Zeng Yi-Han Zhao Jing-Li Li Lian Xiao Yun-Chang

Citation:

The magnetization reversal driven by spin-orbit-assisted spin-transfer torque

Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang
PDF
HTML
Get Citation
  • As the data writing scheme of magnetization reversal driven by spin-transfer torque can overcome the shortcomings of traditional magnetic-field writing mechanism, it has become a mainstream way of implementing information writing in magnetic random access memory. However, the explosive growth of information shows higher requirements for data storage and information processing, thus magnetic random access memories based on spin-transfer torque data writing method pose several issues, including barrier reliability and limited storage speed. Recent experimental studies have shown that the spin-orbit torque through the spin Hall effect or Rashba effect in heavy-metal/ferromagnetic bilayer structures has the potential advantages in overcoming these limitations. They can also be used to drive magnetization to achieve rapid reversal. Especially, the three-terminal magnetic tunnel junction separates data reading from writing current. It has the advantages of faster writing speed and better stability and thus becomes the most promising magnetic storage technique at present. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque in a three-terminal magnetic tunnel junction is studied theoretically in this work. By linearizing the Landau-Lifshitz-Gilbert equation with the additional spin-transfer torque term and spin-orbit torque term in the spherical coordinates, two coupled differential equations and the new equilibrium directions are obtained. With the stability analysis of the new equilibrium directions, the phase diagrams defined in parameter space spanned by the current densities of spin-transfer and spin-orbit torques are established. There are several magnetic states in the phase diagrams, including quasi-parallel stable states, quasi-antiparallel stable states, and bistable states. By adjusting the current density of the spin-transfer torque, the magnetization reversal between two stable states is realized. It is found that the magnetization reversal time is greatly reduced with the assisting of spin-orbit torque, and it decreases with the augment of current density of spin-orbit torque. Meanwhile, the zero-field magnetization reversal can be realized through the interplay between spin-orbit torque and spin-transfer torque. In addition, compared with the damping-like term of spin-orbit torque, the field-like one plays a leading role in magnetization reversal. The presence of field-like term of spin-orbit torque can also reduce the reversal time that decreases with the increase of the ratio of field-like torque to damping-like one.
      Corresponding author: Wang Ri-Xing, wangrixing1982@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704120), the Excellent Youth Fund of Hunan Education Department, China (Grant No. 20B401), and the Foundation of Hunan Education Department, China (Grant No. 21C0509)
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [4]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS. Bull. 43 352Google Scholar

    [5]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physics, Mechanics & Astronomy 46 107306

    [6]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [7]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204Google Scholar

    [8]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [9]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [10]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [11]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [12]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [13]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [14]

    Cai K M, Meiyin Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [15]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [16]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Sci. Rep. 8 382Google Scholar

    [17]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [18]

    Liu L, Zhou C H, Shu X Y, Li C J, Zhao T Y, Lin W N, Deng J Y, Xie Q D, Chen S H, Zhou J, Guo R, Wang H, Yu J H, Shi S, Yang P, Stenphen P, Aurelien M, Chen J S 2021 Nat. Nanotechnol. 16 277Google Scholar

    [19]

    Sheng Y, Kevin W E, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [20]

    Cao Y, Sheng Y, Kevin W E, Ji Yang, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [21]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J M, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C D, Wang J P, Alert F, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [22]

    Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar

    [23]

    Isogami S, Shiokawa Y, Tsumita A, Komura E, Ishitani Y, Hamanaka K, Taniguchi T, Mitani S, Sasaki T, Hayashi M 2021 Sci. Rep. 11 16676Google Scholar

    [24]

    Zhang C L, Takeuchi Y, Shunsuke Fukami S, Ohno H 2021 Appl. Phys. Lett. 118 092406Google Scholar

    [25]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [26]

    Kurebayashi H, Sinaova J, Fang D, lrvine A C, Skinner T D, Wunderlich J, Novák V, Canpion R P, Gallagher B L, Vehstedt E K, Zârba L P, Výborný K, Ferguson A J, Jungwirth T 2014 Nat. Nanotechnol. 9 211Google Scholar

    [27]

    Ou Y X, Pai C F, Shi S J, Ralph D C, Buhrman R A 2016 Phys. Rev. B 94 140414Google Scholar

    [28]

    Fan X, Celik H, Wu J, Ni C Y, Lee K J, Lorenz V O, Xiao J Q 2014 Nat. Commun. 5 3042Google Scholar

    [29]

    Lee J M, Kwon J H, Ramaswamy R, Yoon J, Son J, Qiu X, Mishra R, Srivastava S, Cai K, Yang H 2018 Commun. Phys. 1 2Google Scholar

    [30]

    Zhuo Y D, Cai W L, Zhu D Q, Zhang H C, Du A, Cao K H, Yin J L, Huang Y, Shi K W, Zhao W S 2022 Sci. Sin.: Physics, Mechanics & Astronomy 65 107511

    [31]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210Google Scholar

    [32]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

  • 图 1  理论模型和坐标系

    Figure 1.  Theoretical mode and coordinate system

    图 2  以自旋转移矩电流密度$ J_{{\rm{STT}}} $和自旋轨道矩电流密度$ J_{{\rm{SOT}}} $为控制参数的相图(外磁场$ h_{0} = 2 $), 插图为$ h_{0} = 0 $时的磁性状态相图

    Figure 2.  Phase diagram defined in parameter space spanned by the current densities of STT and SOT for the external magnetic field $ h_{0} = 2 $. The inset is the phase diagram of magnetic states for $ h_{0} = $$ 0 $.

    图 3  自由层磁化强度分量$m_y $随时间的演化轨迹 (a) 图2中“a”, “b”, “c”, “d”和“e”五点的自由层磁化强度分量$ m_{y} $随时间的演化轨迹, 插图为翻转时间随自旋轨道矩电流密度的变化关系; (b) 图2中“a”点对应的不同外磁场作用下$ m_{y} $随时间的演化轨迹

    Figure 3.  Time evolutions of free-layer magnetization $ m_{y} $: (a) Time evolutions of free -layer magnetization$m_y $ for five points “a”, “b”, “c” “d”, and “e” in Fig. 2,the inset shows the dependence of the reversal time on the SOT current density; (b) time evolutions of $ m_{y} $ for point “a” in Fig. 2 with different external magnetic fields

    图 4  以自旋转移矩电流密度$ J_{{\rm{STT}}} $和自旋轨道矩类场项和类阻尼项之比β为控制参数的相图

    Figure 4.  Phase diagram defined in parameter space controlled by the current density of STT and the ratio of field-like term to damping-like one of SOT.

    图 5  图4中不同β值对应的a, b, c, de五点, 自由层磁化强度分量$ m_{y} $随时间的演化关系, 插图为磁化翻转时间随β的变化关系

    Figure 5.  Time evolutions of free-layer magnetization $ m_{y} $ for five points “a”, “b”, “c”, “d”, and “e” in Fig. 4 with different β. The inset shows the dependence of the reversal time on β

    Baidu
  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [4]

    Yuasa S, Hono K, Hu G, Worledge D C 2018 MRS. Bull. 43 352Google Scholar

    [5]

    赵巍胜, 王昭昊, 彭守仲, 王乐知, 常亮, 张有光 2016 中国科学: 物理学 力学 天文学 46 107306

    Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L, Zhang Y G 2016 Sci. Sin.: Physics, Mechanics & Astronomy 46 107306

    [6]

    Sato N, Xue F, White R M, Bi C, Wang S X 2018 Nat. Electron. 1 508Google Scholar

    [7]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M, Klein O, de Loubens G, Naletov V V, Langer J, Ocker B, Pietro, Gaudin G 2018 IEEE Trans. Magn. 54 9300204Google Scholar

    [8]

    Taniguchi T 2019 J. Magn. Magn. Mater. 483 281Google Scholar

    [9]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [10]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [11]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [12]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [13]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [14]

    Cai K M, Meiyin Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [15]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [16]

    Kwak W Y, Kwon J H, Grünberg P, Han S H, Cho B K 2018 Sci. Rep. 8 382Google Scholar

    [17]

    Zhao X Z, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H, Zhao W S 2019 Nanotechnology 30 335707Google Scholar

    [18]

    Liu L, Zhou C H, Shu X Y, Li C J, Zhao T Y, Lin W N, Deng J Y, Xie Q D, Chen S H, Zhou J, Guo R, Wang H, Yu J H, Shi S, Yang P, Stenphen P, Aurelien M, Chen J S 2021 Nat. Nanotechnol. 16 277Google Scholar

    [19]

    Sheng Y, Kevin W E, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [20]

    Cao Y, Sheng Y, Kevin W E, Ji Yang, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [21]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J M, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C D, Wang J P, Alert F, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [22]

    Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar

    [23]

    Isogami S, Shiokawa Y, Tsumita A, Komura E, Ishitani Y, Hamanaka K, Taniguchi T, Mitani S, Sasaki T, Hayashi M 2021 Sci. Rep. 11 16676Google Scholar

    [24]

    Zhang C L, Takeuchi Y, Shunsuke Fukami S, Ohno H 2021 Appl. Phys. Lett. 118 092406Google Scholar

    [25]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [26]

    Kurebayashi H, Sinaova J, Fang D, lrvine A C, Skinner T D, Wunderlich J, Novák V, Canpion R P, Gallagher B L, Vehstedt E K, Zârba L P, Výborný K, Ferguson A J, Jungwirth T 2014 Nat. Nanotechnol. 9 211Google Scholar

    [27]

    Ou Y X, Pai C F, Shi S J, Ralph D C, Buhrman R A 2016 Phys. Rev. B 94 140414Google Scholar

    [28]

    Fan X, Celik H, Wu J, Ni C Y, Lee K J, Lorenz V O, Xiao J Q 2014 Nat. Commun. 5 3042Google Scholar

    [29]

    Lee J M, Kwon J H, Ramaswamy R, Yoon J, Son J, Qiu X, Mishra R, Srivastava S, Cai K, Yang H 2018 Commun. Phys. 1 2Google Scholar

    [30]

    Zhuo Y D, Cai W L, Zhu D Q, Zhang H C, Du A, Cao K H, Yin J L, Huang Y, Shi K W, Zhao W S 2022 Sci. Sin.: Physics, Mechanics & Astronomy 65 107511

    [31]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210Google Scholar

    [32]

    王日兴, 叶华, 王丽娟, 敖章洪 2017 66 127201Google Scholar

    Wang R X, Ye H, Wang L J, Ao Z H 2017 Acta Phys. Sin. 66 127201Google Scholar

  • [1] He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue. Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface. Acta Physica Sinica, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [3] Wang Ke-Xin, Su Li, Tong Liang-Le. Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism. Acta Physica Sinica, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [4] Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin. Field-like torque-induced tunable zero-field spin-torque nano-oscillator. Acta Physica Sinica, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [5] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] Jin Dong-Yue, Cao Lu-Ming, Wang You, Jia Xiao-Xue, Pan Yong-An, Zhou Yu-Xin, Lei Xin, Liu Yuan-Yuan, Yang Ying-Qi, Zhang Wan-Rong. Process deviation based electrical model of spin transfer torque assisted voltage controlled magnetic anisotropy magnetic tunnel junction and its application. Acta Physica Sinica, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [7] He Cong-Li, Xu Hong-Jun, Tang Jian, Wang Xiao, Wei Jin-Wu, Shen Shi-Peng, Chen Qing-Qiang, Shao Qi-Ming, Yu Guo-Qiang, Zhang Guang-Yu, Wang Shou-Guo. Research progress of spin-orbit torques based on two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [8] Yuan Jia-Hui, Yang Xiao-Kuo, Zhang Bin, Chen Ya-Bo, Zhong Jun, Wei Bo, Song Ming-Xu, Cui Huan-Qing. Activation function and computing performance of spin neuron driven by magnetic field and strain. Acta Physica Sinica, 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [9] Li Zai-Dong, Guo Qi-Qi. Rogue wave solution in ferromagnetic nanowires. Acta Physica Sinica, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [10] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [11] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [12] Chen Ai-Tian, Zhao Yong-Gang. Progress of converse magnetoelectric coupling effect in multiferroic heterostructures. Acta Physica Sinica, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [13] Lv Gang, Zhang Hong, Hou Zhi-Wei. Micromagnetic modeling of magnetization switching and oscillation modes in spin valve with tilted spin polarizer. Acta Physica Sinica, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [14] Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You. Progress of electrical control magnetization reversal and domain wall motion. Acta Physica Sinica, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [15] Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong. Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer. Acta Physica Sinica, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [16] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [17] Hao Jian-Hong, Gao Hui. Micromagnetic simulation of magnetization reversal on the annular free layer with nick in magnetic random access memory. Acta Physica Sinica, 2013, 62(5): 057502. doi: 10.7498/aps.62.057502
    [18] Jin Wei, Wan Zhen-Mao, Liu Yao-Wen. Nonlinear magnetization dynamics excited by the spin-transfer torque effect. Acta Physica Sinica, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [19] Bao Jin, Xu Xiao-Guang, Jiang Yong. Current-induced magnetization switching in spin valves. Acta Physica Sinica, 2009, 58(11): 7998-8001. doi: 10.7498/aps.58.7998
    [20] Gao Rui-Xin, Xu Zhen, Chen Da-Xin, Xu Chu-Dong, Chen Zhi-Feng, Liu Xiao-Dong, Zhou Shi-Ming, Lai Tian-Shu. RE-TM antiferromagnetic coupling and laser induced ultrafast magnetization reversal dynamics in GdFeCo magneto-optical films. Acta Physica Sinica, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
Metrics
  • Abstract views:  3517
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2022
  • Accepted Date:  26 February 2023
  • Available Online:  02 March 2023
  • Published Online:  20 April 2023

/

返回文章
返回
Baidu
map