Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2

Wei Lu-Jun Li Yang-Hui Pu Yong

Citation:

Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2

Wei Lu-Jun, Li Yang-Hui, Pu Yong
PDF
HTML
Get Citation
  • The Wely semimetal WTe2 exhibits significant spin-orbit coupling characteristics and can generate unconventional spin current with out-of-plane polarization, which has become a hotspot in recent years. Meanwhile, WTe2 also has high charge-spin conversion efficiency, allowing perpendicular magnetization to be switched deterministically without the assistance of an external magnetic field, which is critical for the high-density integration of low-power magnetic random-access memories. The purpose of this paper is to review the recent advances in the research on spin orbit torque in heterostructures composed of WTe2 and ferromagnetic layers, focusing on progress of research on the detection and magnetization switching in the spin orbit torque of heterojunctions composed of WTe2 prepared by different methods (e.g. mechanical exfoliation and chemical vapor deposition) and ferromagnetic layers such as conventional magnets (e.g, FeNi and CoFeB, etc.) and two-dimensional magnets (e.g. Fe3GeTe2, etc.). Finally, the prospect of related research is discussed.
      Corresponding author: Pu Yong, yongpu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52001169, 61874060, U1932159, 61911530220) and the Introduction Talent Research Launch Fund of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY219164, NY217118).
    [1]

    Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [2]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828Google Scholar

    [3]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [4]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [5]

    Claude C, Albert F, Frédéric N V D 2007 Nature 6 813Google Scholar

    [6]

    Albert F J, Katine J A, Buhrman R A, Ralph D C 2000 Appl. Phys. Lett. 77 3809Google Scholar

    [7]

    Katine J A, Albert F J A, Buhrman R A 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [8]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372Google Scholar

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [10]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [11]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [12]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta. Phys. Sin. 70 127501Google Scholar

    [13]

    Tang W, Liu H L, Li Z, Pan A L, Zeng Y J 2021 Adv. Sci. 8 2100847Google Scholar

    [14]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [15]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [16]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028Google Scholar

    [17]

    Yang S H, Ryu K S, Parkin S 2015 Nat. Nanotechnol. 10 221Google Scholar

    [18]

    Tang W, Zhou Z W, Nie Y Z, Xia Q L, Zeng Z M, Guo G H 2017 Appl. Phys. Lett. 111 172402Google Scholar

    [19]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G S D 2016 Nat. Mater. 16 309Google Scholar

    [20]

    Ryu J, Lee S, Lee K J, Park B G 2020 Adv. Mater. 32 1907148Google Scholar

    [21]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [22]

    Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [23]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [24]

    Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G, Lee K J 2018 Nat. Mater. 17 509Google Scholar

    [25]

    Ma Q, Li Y, Gopman D B, Kabanov Y P, Shull R D, Chien C L 2018 Phys. Rev. Lett. 120 117703Google Scholar

    [26]

    Sheng Y, Edmonds K W, Ma X, Zheng H, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [27]

    Bekele Z A, Liu X H, Cao Y, Wang K Y 2020 Adv. Electron. Mater. 7 2000793Google Scholar

    [28]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H, Wang K Y 2020 Adv. Mater. 32 e1907929Google Scholar

    [29]

    Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar

    [30]

    Jungfleisch M B, Zhang W, Sklenar J, Ding J, Jiang W, Chang H, Fradin F Y, Pearson J E, Ketterson J B, Novosad V, Wu M, Hoffmann A 2016 Phys. Rev. Lett. 116 057601Google Scholar

    [31]

    Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105Google Scholar

    [32]

    MacNeill D, Stiehl G M, Guimarães M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [33]

    Lü W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [34]

    Li Q, Yan J Q, Yang B, Zang Y Y, Zhang J J, He K, Wu M H, Zhao Y F, Mandrus D, Wang J, Xue Q K, Chi L F, Singh D J, Pan M 2016 Phys. Rev. B 94 115419Google Scholar

    [35]

    Johansson A, Henk J, Mertig I 2018 Phys. Rev. B 97 085417Google Scholar

    [36]

    Sun Y, Zhang Y, Felser C, Yan B H 2016 Phys. Rev. Lett. 117 146403Google Scholar

    [37]

    Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G, Feng D L 2015 Phys. Rev. Lett. 115 166601Google Scholar

    [38]

    MacNeill D, Stiehl G M S, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2016 Nat. Phys. 13 300Google Scholar

    [39]

    Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [40]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [41]

    Wang L Z, Xiong J L, Cheng B, Dai Y D, Wang F Y, Pan C, Cao T J, Liu X W, Wang P F, Chen M Y, Yan S N, Liu Z L, Xiao J J, Xu X H, Wang Z L, Shi Y G, Cheong S W, Zhang H J, Liang S J, Miao F 2022 Sci. Adv. 8 6833Google Scholar

    [42]

    Wang X R, Wu H, Qiu R Z, Huang X H, Zhang J R, Long J W, Yao Y X, Zhao Y R, Zhu Z F, Wang J Y, Shi S Y, Chang H X, Zhao W S 2023 Cell Rep. Phys. Sci. 4 101468Google Scholar

    [43]

    Xie Q, Lin W, Sarkar S, Shu X, Chen S, Liu L, Zhao T, Zhou C, Wang H, Zhou J, Gradečak S, Chen J 2021 APL Mater. 9 051114Google Scholar

    [44]

    Wei L J, Yin X M, Liu P, Zhang P C, Niu W, Liu P, Yang J J, Peng J C, Huang F, Liu R B, Chen J R, Chen L, Zhou S, Li F, Niu X H, Du J, Pu Y 2023 Appl. Phys. Lett. 123 252404Google Scholar

    [45]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar

    [46]

    Lü W X, Xue H W, Cai J L, Chen Q, Zhang B S, Zhang Z Z, Zeng Z M 2021 Appl. Phys. Lett. 118 052406Google Scholar

    [47]

    Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W, Eda G, Liang G C, Chang H, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar

    [48]

    Rhodes D, Das S, Zhang Q R, Zeng B, Pradhan N R, Kikugawa N, Manousakis E, Balicas L 2015 Phys. Rev. B 92 125152Google Scholar

    [49]

    Zhao B, Khokhriakov D, Zhang Y, Fu H, Karpiak B, Hoque A M, Xu X, Jiang Y, Yan B, Dash S P 2020 Phys. Rev. Res. 2 013286Google Scholar

    [50]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [51]

    Brown B E 1966 Acta Cryst. 20 264Google Scholar

    [52]

    Hang X, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar

    [53]

    Peng C W, Liao W B, Chen T Y, Pai C F 2021 ACS Appl. Mater. Interfaces 13 15950Google Scholar

    [54]

    Li X, Li P, Hou V D H, Dc M, Nien C H, Xue F, Yi D, Bi C, Lee C M, Lin S J, Tsai W, Suzuki Y, Wang S X 2021 Matter 4 1639Google Scholar

    [55]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [56]

    Zhao B, Karpiak B, Khokhriakov D, Johansson A, Hoque A M, Xu X, Jiang Y, Mertig I, Dash S P 2020 Adv. Mater. 32 2000818Google Scholar

    [57]

    Shin I, Cho W J, An E S, Park S, Jeong H, Jang S, Baek W J, Park S Y, Yang D, Seo J H, Kim G, Ali M N, Choi S, Lee H, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [58]

    Tian C K, Pan F H, Xu S, Ai K, Xia T L, Cheng P 2020 Appl. Phys. Lett. 116 202402Google Scholar

    [59]

    Alahmed L, Nepal B, Macy J, Zheng W, Casas B, Sapkota A, Jones N, Mazza A R, Brahlek M, Jin W, Mahjouri-Samani M, Zhang S S L, Mewes C, Balicas L, Mewes T, Li P 2021 2D Mater 8 045030Google Scholar

    [60]

    Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque A M, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B, Dash S P 2023 Adv. Mater. 35 2209113Google Scholar

    [61]

    Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X Q, Du J, He L, Zhang R, Bian G, Xu Y B 2021 Nat. Commun. 12 2492Google Scholar

    [62]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [63]

    Pan H Y, Zhang C S, Shi J Y, Hu X Q, Wang N Z, An L H, Duan R H, Deb P, Liu Z, Gao W B 2023 ACS Mater. Lett. 5 2226Google Scholar

    [64]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [65]

    Liu Y K, Shi G Y, Kumar D, Kim T, Shi S Y, Yang D S, Zhang J T, Zhang C H, Wang F, Yang S H, Pu Y C, Yu P, Cai K M, Yang H 2023 Nat. Electron. 6 732Google Scholar

    [66]

    Zhang Y, Xu H J, Jia K, Lan G B, Huang Z H, He B, He C L, Shao Q M, Wang Y Z, Zhao M K, Ma T Y, Dong J, Guo C Y, Cheng C, Feng J F, Wan C H, Wei H X, Shi Y G, Zhang G Y, Han X F, Yu G Q 2023 Sci. Adv. 9 eadg9819Google Scholar

  • 图 1  WTe2晶体结构

    Figure 1.  Crystal structure of WTe2.

    图 2  (a) τS/τBτT/τB分别与WTe2厚度的关系; (b)单层和双层的WTe2/Py器件的二次谐波霍尔电压与外加磁场角度关系, τB的符号反转反映在发现峰值信号的不同角度上[32]

    Figure 2.  (a) Ratios of the τS/τB and τTB as a function of WTe2 thickness; (b) second-harmonic Hall data for a WTe2/Py device with a monolayer bilayer WTe2, as a function of the angle of the applied magnetic field. The sign reversal of τB is reflected in the different angles at which the peak signals are found[32].

    图 3  (a)电流沿WTe2 a轴诱导磁化翻转特性[42]; (b)在WTe2/Fe3GeTe2异质结中SOT诱导的无场磁化翻转[40]

    Figure 3.  (a) The current-induced magnetization switching behavior along the a axis of WTe2[42]; (b) SOT-induced field-free switching in WTe2/Fe3GeTe2 bilayers[40].

    表 1  实验研究工作中WTe2晶体的制备方法、铁磁层材料和WTe2/FM异质结的SOT的表征方法、测试温度和自旋霍尔电导率

    Table 1.  Preparation method of WTe2 crystal, FM material, measurement method, experimental temperature and spin Hall conductivity for SOT in WTe2/FM heterostructures.

    制备方法 铁磁层材料 表征方法 测试温度/K 自旋霍尔电导率
    $ / {10^3}~({\hbar /{2{{e}}}}) {(\Omega {\cdot} {\text{m}})^{ - 1}} $
    文献
    Exfoliation Py ST-FMR 300 σS = 8 ± 2
    σA = 9 ± 3
    σB = 3.6 ± 0.8
    [38]
    Py SHH/ST-FMR 300 σS, σT, σA, σB observed [32]
    Py ST-FMR/SHH 300 σS, σA, σB observed [45]
    Fe2.78GeTe2 AHE loop shift 150—190 σB observed [39]
    Fe3GeTe2 Current-driven MS 110—135 σB observed [40]
    Fe3GeTe2 AHE loop shift 120 σB observed [41]
    SrRuO3 AHE loop shift 40 σB observed [43]
    CoTb SHH 300 σS, σT observed [46]
    CVD FeNi ST-FMR 300 σOP = 1.76
    σIP = 7.36
    [47]
    CoFeB AHE loop shift/SHH 300 σOP = 2.05 ± 0.39
    σIP = 3.58 ± 0.12
    [42]
    注: σS, σT, σBσA分别表示面内类阻尼SOT、面内类场SOT、面外类阻尼SOT和面外类场SOT相关的自旋霍尔电导率; σOPσIP分别表示面外和面内自旋霍尔电导率; ST-FMR, SHH, AHE loop shift和Current-driven MS分别表示自旋力矩-铁磁共振、二次谐波测量技术、反常霍尔效应回线偏移和电流驱动的磁化开关测试测试方法; CVD表示化学气相沉积.
    DownLoad: CSV
    Baidu
  • [1]

    Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [2]

    Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828Google Scholar

    [3]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [4]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [5]

    Claude C, Albert F, Frédéric N V D 2007 Nature 6 813Google Scholar

    [6]

    Albert F J, Katine J A, Buhrman R A, Ralph D C 2000 Appl. Phys. Lett. 77 3809Google Scholar

    [7]

    Katine J A, Albert F J A, Buhrman R A 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [8]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372Google Scholar

    [9]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [10]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [11]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [12]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta. Phys. Sin. 70 127501Google Scholar

    [13]

    Tang W, Liu H L, Li Z, Pan A L, Zeng Y J 2021 Adv. Sci. 8 2100847Google Scholar

    [14]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [15]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [16]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028Google Scholar

    [17]

    Yang S H, Ryu K S, Parkin S 2015 Nat. Nanotechnol. 10 221Google Scholar

    [18]

    Tang W, Zhou Z W, Nie Y Z, Xia Q L, Zeng Z M, Guo G H 2017 Appl. Phys. Lett. 111 172402Google Scholar

    [19]

    Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A, Beach G S D 2016 Nat. Mater. 16 309Google Scholar

    [20]

    Ryu J, Lee S, Lee K J, Park B G 2020 Adv. Mater. 32 1907148Google Scholar

    [21]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [22]

    Fukami S, Zhang C, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [23]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [24]

    Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G, Lee K J 2018 Nat. Mater. 17 509Google Scholar

    [25]

    Ma Q, Li Y, Gopman D B, Kabanov Y P, Shull R D, Chien C L 2018 Phys. Rev. Lett. 120 117703Google Scholar

    [26]

    Sheng Y, Edmonds K W, Ma X, Zheng H, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [27]

    Bekele Z A, Liu X H, Cao Y, Wang K Y 2020 Adv. Electron. Mater. 7 2000793Google Scholar

    [28]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H, Wang K Y 2020 Adv. Mater. 32 e1907929Google Scholar

    [29]

    Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar

    [30]

    Jungfleisch M B, Zhang W, Sklenar J, Ding J, Jiang W, Chang H, Fradin F Y, Pearson J E, Ketterson J B, Novosad V, Wu M, Hoffmann A 2016 Phys. Rev. Lett. 116 057601Google Scholar

    [31]

    Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105Google Scholar

    [32]

    MacNeill D, Stiehl G M, Guimarães M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [33]

    Lü W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [34]

    Li Q, Yan J Q, Yang B, Zang Y Y, Zhang J J, He K, Wu M H, Zhao Y F, Mandrus D, Wang J, Xue Q K, Chi L F, Singh D J, Pan M 2016 Phys. Rev. B 94 115419Google Scholar

    [35]

    Johansson A, Henk J, Mertig I 2018 Phys. Rev. B 97 085417Google Scholar

    [36]

    Sun Y, Zhang Y, Felser C, Yan B H 2016 Phys. Rev. Lett. 117 146403Google Scholar

    [37]

    Jiang J, Tang F, Pan X C, Liu H M, Niu X H, Wang Y X, Xu D F, Yang H F, Xie B P, Song F Q, Dudin P, Kim T K, Hoesch M, Das P K, Vobornik I, Wan X G, Feng D L 2015 Phys. Rev. Lett. 115 166601Google Scholar

    [38]

    MacNeill D, Stiehl G M S, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2016 Nat. Phys. 13 300Google Scholar

    [39]

    Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, Singh S 2022 Nat. Mater. 21 1029Google Scholar

    [40]

    Ye X G, Zhu P F, Xu W Z, Shang N Z, Liu K H, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [41]

    Wang L Z, Xiong J L, Cheng B, Dai Y D, Wang F Y, Pan C, Cao T J, Liu X W, Wang P F, Chen M Y, Yan S N, Liu Z L, Xiao J J, Xu X H, Wang Z L, Shi Y G, Cheong S W, Zhang H J, Liang S J, Miao F 2022 Sci. Adv. 8 6833Google Scholar

    [42]

    Wang X R, Wu H, Qiu R Z, Huang X H, Zhang J R, Long J W, Yao Y X, Zhao Y R, Zhu Z F, Wang J Y, Shi S Y, Chang H X, Zhao W S 2023 Cell Rep. Phys. Sci. 4 101468Google Scholar

    [43]

    Xie Q, Lin W, Sarkar S, Shu X, Chen S, Liu L, Zhao T, Zhou C, Wang H, Zhou J, Gradečak S, Chen J 2021 APL Mater. 9 051114Google Scholar

    [44]

    Wei L J, Yin X M, Liu P, Zhang P C, Niu W, Liu P, Yang J J, Peng J C, Huang F, Liu R B, Chen J R, Chen L, Zhou S, Li F, Niu X H, Du J, Pu Y 2023 Appl. Phys. Lett. 123 252404Google Scholar

    [45]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar

    [46]

    Lü W X, Xue H W, Cai J L, Chen Q, Zhang B S, Zhang Z Z, Zeng Z M 2021 Appl. Phys. Lett. 118 052406Google Scholar

    [47]

    Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W, Eda G, Liang G C, Chang H, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar

    [48]

    Rhodes D, Das S, Zhang Q R, Zeng B, Pradhan N R, Kikugawa N, Manousakis E, Balicas L 2015 Phys. Rev. B 92 125152Google Scholar

    [49]

    Zhao B, Khokhriakov D, Zhang Y, Fu H, Karpiak B, Hoque A M, Xu X, Jiang Y, Yan B, Dash S P 2020 Phys. Rev. Res. 2 013286Google Scholar

    [50]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [51]

    Brown B E 1966 Acta Cryst. 20 264Google Scholar

    [52]

    Hang X, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar

    [53]

    Peng C W, Liao W B, Chen T Y, Pai C F 2021 ACS Appl. Mater. Interfaces 13 15950Google Scholar

    [54]

    Li X, Li P, Hou V D H, Dc M, Nien C H, Xue F, Yi D, Bi C, Lee C M, Lin S J, Tsai W, Suzuki Y, Wang S X 2021 Matter 4 1639Google Scholar

    [55]

    Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [56]

    Zhao B, Karpiak B, Khokhriakov D, Johansson A, Hoque A M, Xu X, Jiang Y, Mertig I, Dash S P 2020 Adv. Mater. 32 2000818Google Scholar

    [57]

    Shin I, Cho W J, An E S, Park S, Jeong H, Jang S, Baek W J, Park S Y, Yang D, Seo J H, Kim G, Ali M N, Choi S, Lee H, Kim J S, Kim S D, Lee G H 2022 Adv. Mater. 34 2101730Google Scholar

    [58]

    Tian C K, Pan F H, Xu S, Ai K, Xia T L, Cheng P 2020 Appl. Phys. Lett. 116 202402Google Scholar

    [59]

    Alahmed L, Nepal B, Macy J, Zheng W, Casas B, Sapkota A, Jones N, Mazza A R, Brahlek M, Jin W, Mahjouri-Samani M, Zhang S S L, Mewes C, Balicas L, Mewes T, Li P 2021 2D Mater 8 045030Google Scholar

    [60]

    Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque A M, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B, Dash S P 2023 Adv. Mater. 35 2209113Google Scholar

    [61]

    Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X Q, Du J, He L, Zhang R, Bian G, Xu Y B 2021 Nat. Commun. 12 2492Google Scholar

    [62]

    Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, Chang H X 2022 Nat. Commun. 13 5067Google Scholar

    [63]

    Pan H Y, Zhang C S, Shi J Y, Hu X Q, Wang N Z, An L H, Duan R H, Deb P, Liu Z, Gao W B 2023 ACS Mater. Lett. 5 2226Google Scholar

    [64]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [65]

    Liu Y K, Shi G Y, Kumar D, Kim T, Shi S Y, Yang D S, Zhang J T, Zhang C H, Wang F, Yang S H, Pu Y C, Yu P, Cai K M, Yang H 2023 Nat. Electron. 6 732Google Scholar

    [66]

    Zhang Y, Xu H J, Jia K, Lan G B, Huang Z H, He B, He C L, Shao Q M, Wang Y Z, Zhao M K, Ma T Y, Dong J, Guo C Y, Cheng C, Feng J F, Wan C H, Wei H X, Shi Y G, Zhang G Y, Han X F, Yu G Q 2023 Sci. Adv. 9 eadg9819Google Scholar

  • [1] Zhao Ke-Nan, Li Sheng, Lu Zeng-Xing, Lao Bin, Zheng Xuan, Li Run-Wei, Wang Zhi-Ming. Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in SrRuO3 thin films. Acta Physica Sinica, 2024, 73(11): 117701. doi: 10.7498/aps.73.20240367
    [2] He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue. Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface. Acta Physica Sinica, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [3] Jiao Chen, Jian Yue, Zhang Ai-Xia, Xue Ju-Kui. Excitation spectrum of tunable spin-orbit coupled Bose-Einstein condensates and its effective regulation. Acta Physica Sinica, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [4] Wang Ke-Xin, Su Li, Tong Liang-Le. Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism. Acta Physica Sinica, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [5] Wang Ri-Xing, Zeng Yi-Han, Zhao Jing-Li, Li Lian, Xiao Yun-Chang. The magnetization reversal driven by spin-orbit-assisted spin-transfer torque. Acta Physica Sinica, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [6] Liu Na, Wang Yi, Li Wen-Bo, Zhang Li-Yan, He Shi-Kun, Zhao Jian-Kun, Zhao Ji-Jun. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Physica Sinica, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [7] He Kuan-Yu, Qiu Tian-Yu, Xi Xiao-Xiang. Optical study on crystal symmetry of two-dimensional WTe2. Acta Physica Sinica, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [8] Jia Liang-Guang, Liu Meng, Chen Yao-Yao, Zhang Yu, Wang Ye-Liang. Research progress of two-dimensional quantum spin Hall insulator in monolayer 1T'-WTe2. Acta Physica Sinica, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [9] He Cong-Li, Xu Hong-Jun, Tang Jian, Wang Xiao, Wei Jin-Wu, Shen Shi-Peng, Chen Qing-Qiang, Shao Qi-Ming, Yu Guo-Qiang, Zhang Guang-Yu, Wang Shou-Guo. Research progress of spin-orbit torques based on two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [10] Ai Wen, Hu Xiao-Hui, Pan Lin, Chen Chang-Chun, Wang Yi-Feng, Shen Xiao-Dong. Sensing performance of two-dimensional WTe2-based gas sensors. Acta Physica Sinica, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [11] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [12] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [13] Wang Ri-Xing, Ye Hua, Wang Li-Juan, Ao Zhang-Hong. Magnetization reversal and precession in spin valve structures with a perpendicular free layer and a tilted polarizer layer. Acta Physica Sinica, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [14] Gao Jie, Zhang Min-Cang. Tridiagonal representation with pseudospin symmetry for a noncentral electric dipole and a ring-shaped anharmonic oscillator potential. Acta Physica Sinica, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [15] Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao. Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4. Acta Physica Sinica, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [16] Liu Da-Yong, Chen Dong-Meng. Orbital ordering driven spin dimer state in double-layered antiferromagnet K3Cu2O7. Acta Physica Sinica, 2010, 59(10): 7350-7356. doi: 10.7498/aps.59.7350
    [17] Li Hong-Hong, Wang Jie, Guo Yu-Xian, Wang Feng. Calculation of spin and orbital moments of 3d transition metals using X-ray magnetic circular dichroism in absorption. Acta Physica Sinica, 2006, 55(5): 2633-2638. doi: 10.7498/aps.55.2633
    [18] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [19] WANG YONG-JIU, TANG ZHI-MING. THE ORBITAL PRECESSION EFFECT IN THE MASS QUADRUPOLE MOMENT FIELD. Acta Physica Sinica, 2001, 50(12): 2284-2288. doi: 10.7498/aps.50.2284
    [20] DU MAO-LU, CHEN JIA-JUN, CHEN KANG-SHENG. SPIN-ORBIT COUPLING PARAMETER MODEL OF g FACTOR FOR Ni2+-6X-CLUSTERS. Acta Physica Sinica, 1992, 41(7): 1174-1181. doi: 10.7498/aps.41.1174
Metrics
  • Abstract views:  2522
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2023
  • Accepted Date:  03 January 2024
  • Available Online:  06 January 2024
  • Published Online:  05 January 2024

/

返回文章
返回
Baidu
map