-
研究了Mo覆盖层厚度对MgO/CoFeB结构磁各向异性的影响. 研究发现, 加平行磁场生长出来的MgO/CoFeB/Mo样品表现为面内各向异性, 并且随着CoFeB的厚度减小, 面内各向异性逐渐减弱; 在CoFeB厚度减小到1.1 nm时, 仍可以保持面内各向异性, 垂直方向的外加饱和场逐渐减少; 厚度在0.9 nm及以下的情况下, 面内各向异性消失. 改变Mo覆盖层厚度, 当tMo= 1.6 nm时, 垂直方向的饱和场最小. 当生长过程的磁场变为垂直磁场时, 不同厚度的Mo覆盖层对MgO/CoFeB 的磁各向异性影响不同. Mo厚度在1 nm及以下时MgO/CoFeB/Mo样品表现为面内各向异性, Mo覆盖层厚度在1.2和5 nm之间时样品出现了垂直磁各向异性; 并且垂直方向的矫顽力也发生了变化, Mo覆盖层厚度为1.4 nm时样品的磁滞损耗会大一些.In this paper, the influence of Mo capping layer on magnetic anisotropy of MgO/CoFeB/Mo with varying thickness is studied. It is found that Mo capping layer shows more saturated magnetic moments than Ta capping layer. The direction of the external magnetic field has a great influence on the magnetic anisotropy. The MgO/CoFeB/Mo sample prepared in an applied magnetic field parallel to the plane shows in-plane magnetic anisotropy (IMA). IMA becomes weak as the CoFeB thickness decreases, and it still exists when the thickness decreases to 1.1 nm. At the same time, the saturation field vertical to the plane decreases. When the thickness of CoFeB layer decreases to 0.9 nm or less, the IMA disappears. In our study, the saturated magnetization and magnetic dead layer are 1600 emu/cm3 and 0.26 nm at the annealing temperature 200 ℃, and the interface anisotropy is 0.91 erg/cm2, which is smaller than previous research results. Increasing the annealing temperature helps the sample keep the saturated state under a small magnetic field vertical to the plane, and makes IMA weak and transform into PMA. The variation of the Mo capping layer thickness affects the saturation magnetic moment of the sample. The magnetic moment shows a sharp downtrend when the Mo layer is between 1.2 and 1.6 nm, then it turns stabler with Mo capping layer thickening. Meanwhile, when the Mo capping layer is 1.6 nm, the external vertical saturation field becomes smallest. However under the parallel magnetic field, changing the thickness or annealing temperature, or changing both leads to no PMA occurring. When the magnetic field direction changes from parallel to vertical direction, some of the samples show PMA after the annealing process. The magnetic anisotropy of MgO/CoFeB/Mo varies with the thickness of Mo capping layer. IMA is present when the Mo capping layer is 1 nm or less while PMA is present when the Mo capping layer is between 1.2 and 5 nm. The sample coercive force in the vertical direction varies with thickness, and its magnetic hysteresis loss is much larger when the thickness of Mo capping layer is 1.4 nm.
[1] Zhu J G, Park C doi:10.1016/S1369-7021(06)71693-52006 Mater. Today 9 36
[2] Kishi T, Yoda H, Kai T, et al. 2008 IEDM Tech. Dig. 309 1
[3] Chen Y, Wang X, Li H, Xi H, Yan Y, Zhu W 2010 IEEE Trans. Very Large Scale Integr. Syst. 18 1724
[4] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721
[5] Park J H, Park C, Jeong T, Moneck M T, Nufer N T, Zhu J G 2008 J. Appl. Phys. 103 07A917
[6] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210
[7] Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502
[8] Liu T, Cai J W, Sun L 2012 Aip. Adv. 2 032151
[9] Sbiaa R, Meng H, Piramanayagam S N 2011 Phys. Status Solidi RRL 5 413
[10] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246
[11] Yakushiyi K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Ando K 2010 Appl. Phys. Lett. 97 232508
[12] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
[13] Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501
[14] Yang H X, Chshiev M, Dieny B, Lee J H, Manchon A, Shin K H 2011 Phys. Rev. B 84 054401
[15] Shimabukuro R, Nakamura K, Akiyama T, Ito T 2010 Physica E 42 1014
[16] Jung J H, Lim S H, Lee S R 2010 J. Appl. Phys. 108 113902
[17] Bonell F, Murakami S, Shiota Y, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Lett. 98 232510
[18] Cheng C W, Feng W, Chern G, Lee C M, Wu T H 2011 J. Appl. Phys. 110 033916
[19] Lee D S, Chang H T, Cheng C W, Chern G 2014 Sci. Rep. 4 5895
[20] Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Rep. 45895
[21] Oh Y W, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724
[22] Ibusuki T, Miyajima T, Umehara S, Eguchi S, Sato M 2009 Appl. Phys. Lett. 94 062509
[23] Miyajima T, Ibusuki T, Umehara S, Sato M, Eguchi S, Tsukada M, Kataoka Y 2009 Appl. Phys. Lett. 94 122501
[24] An G G, Lee J B, Yang S M, Kim J H, Chung W S, Hong J P 2015 Acta Mater. 87 259
[25] Niessen A K, De Boer F R 1981 J. Less-Common Met. 82 75
[26] Chikazumi S 1950 J. Phys. Soc. Jpn. 5 327
-
[1] Zhu J G, Park C doi:10.1016/S1369-7021(06)71693-52006 Mater. Today 9 36
[2] Kishi T, Yoda H, Kai T, et al. 2008 IEDM Tech. Dig. 309 1
[3] Chen Y, Wang X, Li H, Xi H, Yan Y, Zhu W 2010 IEEE Trans. Very Large Scale Integr. Syst. 18 1724
[4] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721
[5] Park J H, Park C, Jeong T, Moneck M T, Nufer N T, Zhu J G 2008 J. Appl. Phys. 103 07A917
[6] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D, Fullerton E E 2006 Nat. Mater. 5 210
[7] Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502
[8] Liu T, Cai J W, Sun L 2012 Aip. Adv. 2 032151
[9] Sbiaa R, Meng H, Piramanayagam S N 2011 Phys. Status Solidi RRL 5 413
[10] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y, Osada Y 2002 J. Appl. Phys. 91 5246
[11] Yakushiyi K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S, Ando K 2010 Appl. Phys. Lett. 97 232508
[12] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508
[13] Worledge D C, Hu G, Abraham D W, Sun J Z, Trouilloud P L, Nowak J, Brown S, Gaidis M C, O'Sullivan E J, Robertazzi R P 2011 Appl. Phys. Lett. 98 022501
[14] Yang H X, Chshiev M, Dieny B, Lee J H, Manchon A, Shin K H 2011 Phys. Rev. B 84 054401
[15] Shimabukuro R, Nakamura K, Akiyama T, Ito T 2010 Physica E 42 1014
[16] Jung J H, Lim S H, Lee S R 2010 J. Appl. Phys. 108 113902
[17] Bonell F, Murakami S, Shiota Y, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Lett. 98 232510
[18] Cheng C W, Feng W, Chern G, Lee C M, Wu T H 2011 J. Appl. Phys. 110 033916
[19] Lee D S, Chang H T, Cheng C W, Chern G 2014 Sci. Rep. 4 5895
[20] Liu T, Zhang Y, Cai J W, Pan H Y 2014 Sci. Rep. 45895
[21] Oh Y W, Lee K D, Jeong J R, Park B G 2014 J. Appl. Phys. 115 17C724
[22] Ibusuki T, Miyajima T, Umehara S, Eguchi S, Sato M 2009 Appl. Phys. Lett. 94 062509
[23] Miyajima T, Ibusuki T, Umehara S, Sato M, Eguchi S, Tsukada M, Kataoka Y 2009 Appl. Phys. Lett. 94 122501
[24] An G G, Lee J B, Yang S M, Kim J H, Chung W S, Hong J P 2015 Acta Mater. 87 259
[25] Niessen A K, De Boer F R 1981 J. Less-Common Met. 82 75
[26] Chikazumi S 1950 J. Phys. Soc. Jpn. 5 327
计量
- 文章访问数: 6098
- PDF下载量: 166
- 被引次数: 0