Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Biaxial Strain Effects on Thermal Transport and Thermoelectric Performance of Janus Transition Metal Dichalcogenide Monolayers

Zhang Min Tang Gui-Hua Shi Xiao-Lei Li Yi-Fei Zhao Xin Huang Dian Chen Zhi-Gang

Citation:

Biaxial Strain Effects on Thermal Transport and Thermoelectric Performance of Janus Transition Metal Dichalcogenide Monolayers

Zhang Min, Tang Gui-Hua, Shi Xiao-Lei, Li Yi-Fei, Zhao Xin, Huang Dian, Chen Zhi-Gang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Janus transition metal dichalcogenide monolayers, characterized by antisymmetric crystal structures and unique physical properties, show great potential for applications in micro/nano-electronic devices and thermoelectrics. In this work, the strain-tuned phonon thermal transport and thermoelectric performance of six Janus transition metal dichalcogenide monolayers are systematically investigated by first-principles calculations. This study focuses on monolayers of PtSSe and PtTeSe with a 1T-phase crystal structure, as well as monolayers of MoSSe, MoTeSe, WSSe, and WTeSe with a 1H-phase crystal structure. All first-principles calculations are performed using the open-source software Quantum ESPRESSO. The lattice thermal conductivity is obtained based on lattice dynamics and iterative solutions of the Boltzmann Transport Equation. The thermal conductivities of PtSSe, MoSSe, and WSSe monolayers are generally higher than those of PtTeSe, MoTeSe, and WTeSe. Acoustic phonons are responsible for the majority of thermal transport, contributing over 95%. Under unstrained conditions, monolayer PtSSe demonstrates a superior thermal conductivity of 104 W·m-1·K-1, making it advantageous for thermal management applications in electronic devices. Under tensile strain, the thermal conductivity of PtSSe, MoSSe, and WSSe monolayers exhibits a monotonic decrease; however, for PtTeSe, MoTeSe, and WTeSe monolayers, thermal conductivity initially shows an increase, followed by a subsequent decrease. Under a 10% tensile strain, the thermal conductivities of these six Janus monolayers all demonstrate a reduction exceeding 60%. Furthermore, this work provides a comprehensive analysis of the impact of strain on specific heat capacity, phonon group velocity, and phonon lifetime. Phonon mode-level analysis and cross-calculated thermal conductivity (with specific heat capacity, phonon group velocity, and phonon lifetime replaced by values under different strain conditions) reveal that phonon lifetime is the dominant factor governing thermal conductivity under strain. For electrical transport properties, calculations are performed using the Boltzmann transport equation based on deformation potential theory. At room temperature, the thermoelectric figure of merit (ZT) for PtTeSe is 0.91 without strain, which can be improved to 1.31 under 10% tensile strain. The ZT value reaches as high as 3.96 for p-type PtTeSe and 2.38 for n-type PtTeSe at 700 K, indicating that PtTeSe monolayer is a highly promising thermoelectric material. Strain-induced enhancements in the thermoelectric performance of PtTeSe are facilitated by a reduction in lattice thermal conductivity and a reconfiguration of the band structure. This work demonstrates that strain engineering is an effective strategy for tuning the thermal transport and thermoelectric performances of Janus transition metal dichalcogenide monolayers.
  • [1]

    Zhang Y, Lv Q, Wang H, Zhao S, Xiong Q, Lv R, Zhang X 2022 Science 378 169

    [2]

    Wu P, Tan L, Li W, Cao L-W, Zhao J-B, Qu Y, Li A 2023 Acta Phys. Sin-ch. Ed. 72 118101 (in Chinese) [武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂 2023 72 118101]

    [3]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [4]

    Zhao X, Tang G-H, Li Y-F, Zhang M 2021 Journal of Engineering Thermophysics 42 2455 (in Chinese) [赵欣, 唐桂华, 李一斐, 张敏 2021 工程热 42 2455]

    [5]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192

    [6]

    Lu A-Y, Zhu H, Xiao J, Chuu C-P, Han Y, Chiu M-H, Cheng C-C, Yang C-W, Wei K-H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M-Y, Zhang X, Li L-J 2017 Nat. Nanotechnol. 12 744

    [7]

    Lin Y-C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A, Meyer H M, III, Lorenz M, Chisholm M F, Ivanov I N, Rouleau C M, Duscher G, Xiao K, Geohegan D B 2020 ACS Nano 14 3896

    [8]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petrić M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Müller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320

    [9]

    Sant R, Gay M, Marty A, Lisi S, Harrabi R, Vergnaud C, Dau M T, Weng X, Coraux J, Gauthier N, Renault O, Renaud G, Jamet M 2020 npj 2D Mater. Appl. 4 41

    [10]

    Qin Y, Sayyad M, Montblanch A R P, Feuer M S G, Dey D, Blei M, Sailus R, Kara D M, Shen Y, Yang S, Botana A S, Atature M, Tongay S 2022 Adv. Mater. 34 2106222

    [11]

    Huang S-J, Zhang T, Zeng Z-Y, Geng H-Y, Chen X-R 2024 Vacuum 224 113143

    [12]

    Liu J, Shen T, Wang L, Ren J-C, Liu W, Li S 2024 Adv. Funct. Mater. 34 2401737

    [13]

    Cui H, Yang T, Peng X, Zhang G 2022 J. Mater. Res. Technol. 18 1218

    [14]

    Zhang D-H, Zhou W-Z, Li A-L, Ouyang F-P 2021 Acta Phys. Sin-ch. Ed. 70 096301 (in Chinese) [张德贺, 周文哲, 李奥林, 欧阳方平 2021 70 096301]

    [15]

    Zhang Y-H, Li X-B, Zhan C-X, Wang M-Q, Pu Y-X 2023 Acta Phys. Sin-ch. Ed. 72 046201 (in Chinese) [张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学 2023 72 046201]

    [16]

    Tao W-L, Yi M, E. H C-, Yan C, and Ji G-F 2019 Philos. Mag. 99 1025

    [17]

    Liu C, Yao M, Yang J, Xi J, Ke X 2020 Mater. Today Phys. 15 100277

    [18]

    Bera J, Betal A, Sahu S 2021 J. Alloys Compd. 872 159704

    [19]

    Guo S-D 2018 Phys. Chem. Chem. Phys. 20 7236

    [20]

    Han D, Qin H, Tu H, Chen Y, Sun H, Xue Y, Zeng X 2025 J. Electron. Mater. 54 2180

    [21]

    Tao W-L, Lan J-Q, Hu C-E, Cheng Y, Zhu J, Geng H-Y 2020 J. Appl. Phys. 127 035101

    [22]

    Guo S-D, Li Y-F, Guo X-S 2019 Comp. Mater. Sci. 161 16

    [23]

    Patel A, Singh D, Sonvane Y, Thakor P B, Ahuja R 2020 ACS Appl. Mater. Interfaces 12 46212

    [24]

    Han D, Wang M, Yang X, Du M, Cheng L, Wang X 2022 J. Alloys Compd. 903 163850

    [25]

    Zhang M, Tang G H, Li Y F, Fu B, Wang X Y 2020 Int. J. Thermophys. 41 57

    [26]

    Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104

    [27]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [28]

    Pan L, Carrete J, Wang Z 2022 J. Phys. Condens. Mat. 34 015303

    [29]

    Ahmad S, Idrees M, Khan F, Nguyen C V, Ahmad I, Amin B 2021 Chem. Phys. Lett. 776 138689

    [30]

    Ahmad S, Khan F, Amin B, Ahmad I 2021 J. Solid State Chem. 299 122189

    [31]

    Wang C, Chen Y-X, Gao G, Xu K, Shao H 2022 Appl. Surf. Sci. 593 153402

    [32]

    Chaurasiya R, Tyagi S, Singh N, Auluck S, Dixit A 2021 J. Alloys Compd. 855 157304

    [33]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys. Condens. Mat. 21 395502

    [34]

    Hamann D R 2013 Phys. Rev. B 88 085117

    [35]

    Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747

    [36]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140

    [37]

    Li Y-F, Tang G-H, Zhang M, Zhao X 2022 Journal of Engineering Thermophysics 43 479 (in Chinese) [李一斐, 唐桂华, 张敏, 赵欣 2022 工程热 43 479]

    [38]

    Han D, Yang X, Du M, Xin G, Zhang J, Wang X, Cheng L 2021 Nanoscale 13 7176

    [39]

    Tang Z, Wang X, Li J, He C, Chen M, Tang C, Ouyang T 2023 Phys. Rev. B 108 214304

    [40]

    Bhojani A K, Kagdada H L, Singh D K 2025 Phys. Rev. B 111 085419

    [41]

    Yuan K, Zhang X, Tang D, Hu M 2018 Phys. Rev. B 98 144303

    [42]

    Tang Z, Wang X, Li J, He C, Tang C, Wang H, Chen M, Ouyang T 2023 Appl. Phys. Lett. 122

    [43]

    Tang Z, Wang X, He C, Li J, Chen M, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320

    [44]

    Lindsay L, Broido D A, Carrete J, Mingo N, Reinecke T L 2015 Phys. Rev. B 91 121202

    [45]

    Zhang M, Tang G, Li Y 2021 ACS Omega 6 3980

    [46]

    Wang Y, Chen N-D, Yang C, Zeng Z-Y, Hu C-E, Chen X-R 2021 Acta Phys. Sin-ch. Ed. 70 116301 (in Chinese) [王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣 2021 70 116301]

    [47]

    Li Y F, Tang G H, Fu B, Zhang M, Zhao X 2020 ACS Appl. Energy Mater. 3 9234

    [48]

    Wang N, Li M, Xiao H, Gao Z, Liu Z, Zu X, Li S, Qiao L 2021 npj Comput. Mater. 7 18

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, doi: 10.7498/aps.73.20231979
    [2] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, doi: 10.7498/aps.73.20240432
    [3] Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Physica Sinica, doi: 10.7498/aps.71.20211843
    [4] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, doi: 10.7498/aps.71.20220179
    [5] Pan Feng-Chun, Lin Xue-Ling, Wang Xu-Ming. First-principles study of strain effect on magnetic and optical properties in (Ga, Mo)Sb. Acta Physica Sinica, doi: 10.7498/aps.71.20212316
    [6] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, doi: 10.7498/aps.71.20220939
    [7] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20221019
    [8] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, doi: 10.7498/aps.70.20210145
    [9] Lu Qun-Lin, Yang Wei-Huang, Xiong Fei-Bing, Lin Hai-Feng, Zhuang Qin-Qin. Effect of biaxial strain on the gas-sensing of monolayer GeSe. Acta Physica Sinica, doi: 10.7498/aps.69.20200539
    [10] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, doi: 10.7498/aps.68.20182266
    [11] Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan. Electron transport properties of Mg2Si under hydrostatic pressures. Acta Physica Sinica, doi: 10.7498/aps.64.077103
    [12] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, doi: 10.7498/aps.62.167502
    [13] Xie Jian-Feng, Cao Jue-Xian. Modulation of the band structure of layered BN film with stain. Acta Physica Sinica, doi: 10.7498/aps.62.017302
    [14] Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles calculation for mechanical properties of metal dihydrides. Acta Physica Sinica, doi: 10.7498/aps.61.108801
    [15] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.61.227102
    [16] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, doi: 10.7498/aps.60.018403
    [17] Luo Wen-Hui, Li Han, Lin Ze-Bing, Tang Xin-Feng. Effects of Si content on phase composition and thermoelectric properties of higher manganese silicide. Acta Physica Sinica, doi: 10.7498/aps.59.8783
    [18] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, doi: 10.7498/aps.57.6488
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, doi: 10.7498/aps.54.5308
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  75
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  29 April 2025

/

返回文章
返回
Baidu
map