Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-Principles Study on the Regulation of Electron and Hole Doping in Superconducting Ternary Hydride CaYH12

Lin Jian-Hua Cui Jia-Hao Zhuang Quan

Citation:

First-Principles Study on the Regulation of Electron and Hole Doping in Superconducting Ternary Hydride CaYH12

Lin Jian-Hua, Cui Jia-Hao, Zhuang Quan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Over the past decades, realizing room-temperature superconductivity has become the tireless pursuit of scientists. Guided by the ‘chemical precompression’ theory, hydrogen-rich compounds have emerged as prime candidates for high-temperature superconductors, positioning them at the forefront of superconducting materials research. Extensive computational studies have identified numerous binary hydrides with predicted superconducting transition temperatures (Tc) exceeding 200 K, such as CaH6, H3S, MgH6, YH6, YH9, YH10, and LaH10 et al. Significantly, the high-Tc of H3S, LaH10, CaH6, YH6, YH9 has been experimentally confirmed. Compared to binary hydrides, ternary hydrides offer more diverse chemical compositions and structures, potentially leading to enhanced properties. Zhang et al. theoretically designed a series of AXH8-type (A = Sc, Ca, Y, Sr, La, Ba; X = Be, B, Al) ternary hydrides with “fluorite-type” backbone, which were predicted to exhibit high-Tc under moderate pressure. Among them, LaBeH8 has been experimentally confirmed to achieve a Tc of 110 K at 80 GPa. The Tcs of ternary clathrate hydrides of Li2MgH16 and Li2NaH17 have been predicted to be significantly surpassing the room temperature, while the required stabilization pressures all exceed 200 GPa. Xie et al. and Liang et al. independently predicted CaYH12 compounds with Pm-3m and Fd-3m space groups, both of which exhibit high-Tc above 200 K at about 200 GPa. Other ternary hydrides, such as La-B-H, K-B-H, La-Ce-H, and Y-Ce-H, have also been extensively investigated. At current stage, a major focus of superconducting hydrides is to achieve high-temperature superconductivity at lower pressures. In this study, taking Pm-3m (CaYH12) as a representative, we systematically investigated the effects of electron and hole doping on the dynamical stability and superconductivity in ternary hydride by first-principal calculations. The Pm-3m (CaYH12) exhibits a Tc of 218 K at 200 GPa, which is consistent with previous report. When decompressing to below 180 GPa, imaginary phonons emerge. The analysis of doping simulations demonstrated that the electron doping exacerbates the softening of the imaginary phonons, whereas hole doping eliminates the imaginary frequencies. At the pressures of 130 GPa, 100 GPa and 70 GPa, the Pm-3m (CaYH12) phase can be stabilized by hole doping at the concentration of 0.9e/cell, 0.8 e/cell, and 1.1 e/cell, respectively. Further electron-phonon coupling calculations show that the Tcs of Pm-3m (CaYH12) at 130 GPa, 100 GPa and 70 GPa are 194 K, 209 K, and 194 K at the corresponding doping level, which are only 10-20 K less than the Tc at 200 GPa. At the pressure of 70 GPa, Tc slightly decreases to 189 K at a doping level of 1.2 e/cell, primarily due to the reduced ωlog compared to the case of 1.1e/cell. And the enhanced λ at 1.2 e/cell is mainly contributed by the average electron-phonon coupling matrix element $\left\langle I^2\right\rangle$ and average phonon frequency $\left\langle\omega^2\right\rangle^{1 / 2}$, rather than the electronic density of states at the Fermi level N(εF). These results indicated that hole doping represents a promising and effective strategy for optimizing the superconductivity of Pm-3m (CaYH12) by maintaining high-Tc at low pressures. Our study has paved an avenue for realizing high-temperature superconductors at low pressure.
  • [1]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515

    [2]

    Loubeyre P, Occelli F, Dumas P 2020 Nature 577 631

    [3]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002

    [4]

    Wang H, Tse J S, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 6463

    [5]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [6]

    Feng X, Zhang J, Gao G, Liu H, Wang H 2015 RSC Adv. 5 59292

    [7]

    Li Y, Hao J, Liu H, Tse J S, Wang Y, Ma Y 2015 Sci. Rep. 5 9948

    [8]

    Liu H, Naumov, II, Hoffmann R, Ashcroft N W, Hemley R J 2017 Proc. Natl. Acad. Sci. U.S.A. 114 6990

    [9]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y 2017 Phys. Rev. Lett. 119 107001

    [10]

    Duan D, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102

    [11]

    Song H, Zhang Z, Cui T, Pickard C J, Kresin V Z, Duan D 2021 Chin. Phys. Lett. 38 107401

    [12]

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407

    [13]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [14]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528

    [15]

    Salke N P, Davari Esfahani M M, Zhang Y, Kruglov I A, Zhou J, Wang Y, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F 2019 Nat. Commun. 10 4453

    [16]

    Li X, Huang X, Duan D, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y, Zhou Q, Liu B, Cui T 2019 Nat. Commun. 10 3461

    [17]

    Chen W, Semenok D V, Kvashnin A G, Huang X, Kruglov I A, Galasso M, Song H, Duan D, Goncharov A F, Prakapenka V B, Oganov A R, Cui T 2021 Nat. Commun. 12 273

    [18]

    Kong P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, Eremets M I 2021 Nat. Commun. 12 5075

    [19]

    Ma L, Zhou M, Wang Y, Kawaguchi S, Ohishi Y, Peng F, Liu H, Liu G, Wang H, Ma Y 2021 Phys. Rev. Research 3 043107

    [20]

    Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H 2022 Phys. Rev. Lett. 128 167001

    [21]

    Li Z, He X, Zhang C, Wang X, Zhang S, Jia Y, Feng S, Lu K, Zhao J, Zhang J 2022 Nat. Commun. 13 2863

    [22]

    Wang Y, Wang K, Sun Y, Ma L, Wang Y, Zou B, Liu G, Zhou M, Wang H 2022 Chin. Phys. B 31 106201

    [23]

    Zhang X, Zhao Y, Yang G 2022 Wires Comput. Mol. Sci. 12 e1582

    [24]

    Liu P, Wang C, Zhang D, Wang X, Duan D, Liu Z, Cui T 2024 J. Phys. Condens. Matter. 36 353001

    [25]

    Sun Y, Zhong X, Liu H, Ma Y 2024 Natl. Sci. Rev. 11 nwad270

    [26]

    Zhao W, Huang X, Zhang Z, Chen S, Du M, Duan D, Cui T 2024 Natl. Sci. Rev. 11 nwad307

    [27]

    Li B, Yang Y, Fan Y, Zhu C, Liu S, Shi Z 2023 Chin. Phys. Lett. 40 097402

    [28]

    Zhang Z, Cui T, Hutcheon M J, Shipley A M, Song H, Du M, Kresin V Z, Duan D, Pickard C J, Yao Y 2022 Phys. Rev. Lett. 128 047001

    [29]

    Song Y, Bi J, Nakamoto Y, Shimizu K, Liu H, Zou B, Liu G, Wang H, Ma Y 2023 Phys. Rev. Lett. 130 266001

    [30]

    Sun Y, Lv J, Xie Y, Liu H, Ma Y 2019 Phys. Rev. Lett. 123 097001

    [31]

    Xie H, Duan D, Shao Z, Song H, Wang Y, Xiao X, Li D, Tian F, Liu B, Cui T 2019 J. Phys. Condens. Matter. 31 245404

    [32]

    Liang X, Bergara A, Wang L, Wen B, Zhao Z, Zhou X F, He J, Gao G, Tian Y 2019 Phys. Rev. B 99 100505(R)

    [33]

    Liang X, Bergara A, Wei X, Song X, Wang L, Sun R, Liu H, Hemley R J, Wang L, Gao G, Tian Y 2021 Phys. Rev. B 104 134501

    [34]

    Gao M, Yan X W, Lu Z Y, Xiang T 2021 Phys. Rev. B. 104 L100504

    [35]

    Chen L C, Luo T, Cao Z Y, Dalladay-Simpson P, Huang G, Peng D, Zhang L L, Gorelli F A, Zhong G H, Lin H Q 2024 Nat. Commun. 15 1809

    [36]

    An D, Conway L J, Duan D, Zhang Z, Jiang Q, Song H, Huo Z, Pickard C J, Cui T 2024 Adv. Funct. Mater. 2418692

    [37]

    Yan X Z, Zhou X Z, Liu C F, Xu Y L, Huang Y B, Sheng X W, Chen Y M 2024 Chin. Phys. B 33 086301

    [38]

    Kong X, Gao M, Yan X W, Lu Z Y, Xiang T 2018 Chin. Phys. B 27 046301

    [39]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402

    [40]

    Wang C, Liu S, Jeon H, Yi S, Bang Y, Cho J H 2021 Phys. Rev. B 104 L020504

    [41]

    Yu H, Chen Y 2022 Phys. Rev. B 106 024515

    [42]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys. Condens. Matter. 21 395502

    [43]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [44]

    Dronskowski R, Blöchl P E 1993 J. Phys. Chem. 97 8617

    [45]

    Nazarov M V, Leng L, Leong Y, Chen L, Arellano-Ramirez I D 2014 Mold. J. Phys. Sci. 13 106

    [46]

    McMillan W L 1968 Phys. Rev. 167 331

    [47]

    Chan K T, Malone B D, Cohen M L 2013 Phys. Rev. B 88 064517

    [48]

    Allen P B 1972 Phys. Rev. B 6 2577

    [49]

    Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855

    [50]

    Ding D, Qu Z, Han X, Han C, Zhuang Q, Yu X L, Niu R, Wang Z, Li Z, Gan Z 2022 Nano Lett. 22 7919

    [51]

    Pei Y L, Wu H, Wu D, Zheng F, He J 2014 J. Am. Chem. Soc. 136 13902

    [52]

    Liu Z, Liu Z, Zhuang Q, Ying J, Cui T 2024 npj Comput. Mater. 10 1

  • [1] LI Xinyu, HOU Yuhua, CHEN Xuan, HUANG Youlin, LI Wei, TAO Xiaoma. First-principles study of effects of Ca-Co (Zn) co-doping on properties of M-type strontium ferrite. Acta Physica Sinica, doi: 10.7498/aps.74.20241626
    [2] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, doi: 10.7498/aps.73.20231436
    [3] Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan. First-principles study of SrSnO3 as transparent conductive oxide. Acta Physica Sinica, doi: 10.7498/aps.72.20221544
    [4] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, doi: 10.7498/aps.70.20202043
    [5] Zhong Shu-Lin, Qiu Jia-Hao, Luo Wen-Wei, Wu Mu-Sheng. First-principles study of properties of rare-earth-doped LiFePO4. Acta Physica Sinica, doi: 10.7498/aps.70.20210227
    [6] Hu Qian-Ku, Qin Shuang-Hong, Wu Qing-Hua, Li Dan-Dan, Zhang Bin, Yuan Wen-Feng, Wang Li-Bo, Zhou Ai-Guo. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides. Acta Physica Sinica, doi: 10.7498/aps.69.20200234
    [7] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, doi: 10.7498/aps.68.20190158
    [8] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, doi: 10.7498/aps.68.20191258
    [9] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, doi: 10.7498/aps.62.056105
    [10] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, doi: 10.7498/aps.62.246301
    [11] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, doi: 10.7498/aps.62.083102
    [12] Hu Yan-Chun, Wang Yan-Wen, Zhang Ke-Lei, Wang Hai-Ying, Ma Heng, Lu Qing-Feng. Hole doping effects on structure and magnetic properties of Sr2FeMoO6. Acta Physica Sinica, doi: 10.7498/aps.61.226101
    [13] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, doi: 10.7498/aps.60.077104
    [14] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, doi: 10.7498/aps.60.117105
    [15] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, doi: 10.7498/aps.59.2051
    [16] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.515
    [17] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, doi: 10.7498/aps.57.2368
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, doi: 10.7498/aps.57.7794
    [19] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, doi: 10.7498/aps.56.1598
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, doi: 10.7498/aps.56.4817
Metrics
  • Abstract views:  46
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  10 May 2025

/

返回文章
返回
Baidu
map