搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co/Ni多层膜垂直磁各向异性的研究

俱海浪 李宝河 吴志芳 张璠 刘帅 于广华

引用本文:
Citation:

Co/Ni多层膜垂直磁各向异性的研究

俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华

Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect

Ju Hai-Lang, Li Bao-He, Wu Zhi-Fang, Zhang Fan, Liu Shuai, Yu Guang-Hua
PDF
导出引用
  • 采用直流磁控溅射法在玻璃基片上制备了Pt底层的Co/Ni多层膜样品, 对影响样品垂直磁各向异性的各因素进行了调制, 通过样品的反常霍尔效应系统的研究了Co/Ni多层膜的垂直磁各向异性. 结果表明, 多层膜中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要的影响. 通过对多层膜各个参数的调制优化, 最终获得了具有良好的垂直磁各向异性的Co/Ni多层膜最佳样品Pt(2.0)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2.0), 经计算, 该样品的各向异性常数Keff 达到了3.6×105 J/m3, 说明样品具备良好的垂直磁各向异性. 最佳样品磁性层厚度仅为0.8 nm, 样品总厚度在5 nm以内, 可更为深入的研究其与元件的集成性.
    Co/Ni multilayers with Pt underlayers have been prepared by magnetron sputtering technique, and their perpendicular magnetic anisotropy (PMA) was studied by the anomalous Hall effect (AHE). The PMA of the samples can be studied by the intensity of Hall signal (RHall), remanence ratio (Mr/Ms), coercivity (HC) and the squarefless of the samples in the Hall hysteresis loops. A clear PMA is observed in the as-deposited amorphous Co/Ni multilayers. The PMA of Co/Ni multilayers is strongly dependent on the thicknesses of Pt, Co, and Ni, and the number of Co/Ni bilayers. After testing, the thicknesses of Pt, Co, and Ni, and the periodic number (n) of Co/Ni bilayers are determined to be 2 nm, 0.2 nm, 0.4 nm and 1 respectively. The optimum Co/Ni multilayer with excellent performance of PMA has a structureflexpressed as Pt(2)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2). The hysteresis loop of the sample with the field applied in plane is tested, showing the characteristics of hard axis typically. PMA can be measured by the anisotropy constant Keff which is determined by the competition of the interface anisotropy to the volume anisotropy. If the interface anisotropy is dominant, the sample will have PMA. The anisotropy constant Keff of Pt(2)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2) is 3.6×105 J/m3, illustrating that it has an excellent PMA, and the interface anisotropy of Co/Ni is the main factor that makes Keff a larger value. Since the thickness of magnetic layer in the optimum sample is only 0.8 nm and the total thickness of it less than 5 nm, the integration of the device can be studied further. Furthermore, the coercivity of an optimum Co/Ni multilayered sample is relatively small and can be increased by inserting an oxidation layer or by other ways.
    • 基金项目: 国家自然科学基金(批准号: 11174020)和北京市大学生科研计划(批准号: SJ201402045) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174020), and the College student reflearch program of Beijing, China (Grant No. SJ201402045).
    [1]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 94 122508

    [2]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D 2006 Nat. Mater. 5 210

    [3]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [4]

    Kou S P, Lu R, Liang J Q 2003 Chin. Phys. Lett. 19 1525

    [5]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2010 Phys. 39 618 (in Chinese) [余睿, 张薇, 翁红明, 戴希, 方忠 2010 物理 39 618]

    [6]

    Kohn W, Luttinger J M 1957 Phys. Rev. 108 590

    [7]

    Luttinger J M 1958 Phys. Rev. 112 739

    [8]

    Berger L 1970 Phys. Rev. B 2 4959

    [9]

    Smith J 1973 Phys. Rev. B 8 2349

    [10]

    Berger L 1973 Phys. Rev. B 8 2351

    [11]

    Smith J 1976 Phys. Rev. B 17 1450

    [12]

    McGuire T R, Gambino R J, Handley R C O 1980 The Hall Effect and Its Applications (Vol. 1) (New York: Plenum Publishing Corp.) pp137

    [13]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508

    [14]

    Seki T, Mitani S, Yakushiji K, Takanashi K 2006 Appl. Phys. Lett. 88 172504

    [15]

    Zhang X, Shi L, Li J, Xia Y J, Shi Z, Zhou S M 2013 Chin. Phys. B 22 117803

    [16]

    Chen W, Beaujour J M L, Loubens G, Keni A D, Sun J Z 2008 Appl. Phys. Lett. 92 012507

    [17]

    Thiyagarajah N, Bae S, Joo H W, Han Y C, Kim J 2008 Appl. Phys. Lett. 92 062504

    [18]

    Van Dijken S, Crofton M, CzaPkiewiez M, Zoladz M, Stobiecki T 2006 J. Appl.Phys. 99 083901

    [19]

    Mishra S K, Radu F, Valencia S, Schmitz D, Schierle E, Drr H A, Eberhardt W 2010 Phys. Rev. B 81 212404

    [20]

    Chen X, Liu H F, Han X F, Ji Y 2013 Acta Phys. Sin. 62 137501 (in Chinese) [陈希, 刘厚方, 韩秀峰, 姬扬 2013 62 137501]

    [21]

    Nakayama, Kai T, Shimomura N, Amano M, Kitagawa E, Nagase T, Yoshikawa M, Kishi T, Ikegawa S, Yoda H 2008 J. Appl. Phys. 103 07A710

    [22]

    Ueda K, Koyama T, Hiramatsu R, Chiba D, Fukami S, Tanigawa H, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T 2012 Appl. Phys. Lett. 100 202407

    [23]

    Ryu K-S, Thomas L, Yang S-H, Parkin S S P 2012 Appl. Phys. Express. 5 093006

    [24]

    Lavrijsen R, Haazen P P J, Mure E, Franken J H, Kohlhepp J T, Swagten H J M, Koopsmans B 2012 Appl. Phys. Lett. 100 262408

    [25]

    Tanigawa H, Ohshima N, Suzuki T, Suemitsu K, Kariyada E 2012 J. Appl. Phys., Part 1. 51 100202

    [26]

    Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601 (in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 63 217601]

    [27]

    Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404

    [28]

    Ding Y F, Jack H, Judy, Wang J P 2005 J. Appl. Phys. 97 10J117

    [29]

    Jungblut R, oehoorn R C, Johnson M T, Johnson aan de Stegge J, Reinders A 1994 J. Appl. Phys. 75 6659

    [30]

    Fu Y Q, Liu Y, Jin C, Yu G H 2009 Acta Phys. Sin. 58 7977 (in Chinese) [付艳强, 刘洋, 金川于广华 2009 58 7977]

    [31]

    Johnsony M T, Bloemenzx P J H, Broedery F J A, Vries J J 1996 Rep. Prog. Phys. 59 1409

    [32]

    Liu S, Ju H L, Yu G H, Li B H, Chen X B 2014 Chin. J. R. Mater. 38 762 (in Chinese) [刘帅, 俱海浪, 于广华, 李宝河, 陈晓白 2014 稀有金属 38 762]

  • [1]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2009 Appl. Phys. Lett. 94 122508

    [2]

    Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D 2006 Nat. Mater. 5 210

    [3]

    Meng H, Wang J P 2006 Appl. Phys. Lett. 88 172506

    [4]

    Kou S P, Lu R, Liang J Q 2003 Chin. Phys. Lett. 19 1525

    [5]

    Yu R, Zhang W, Weng H M, Dai X, Fang Z 2010 Phys. 39 618 (in Chinese) [余睿, 张薇, 翁红明, 戴希, 方忠 2010 物理 39 618]

    [6]

    Kohn W, Luttinger J M 1957 Phys. Rev. 108 590

    [7]

    Luttinger J M 1958 Phys. Rev. 112 739

    [8]

    Berger L 1970 Phys. Rev. B 2 4959

    [9]

    Smith J 1973 Phys. Rev. B 8 2349

    [10]

    Berger L 1973 Phys. Rev. B 8 2351

    [11]

    Smith J 1976 Phys. Rev. B 17 1450

    [12]

    McGuire T R, Gambino R J, Handley R C O 1980 The Hall Effect and Its Applications (Vol. 1) (New York: Plenum Publishing Corp.) pp137

    [13]

    Carvello B, Ducruet C, Rodmacq B, Auffret S, Gautier E, Gaudin G, Dieny B 2009 Appl. Phys. Lett. 92 102508

    [14]

    Seki T, Mitani S, Yakushiji K, Takanashi K 2006 Appl. Phys. Lett. 88 172504

    [15]

    Zhang X, Shi L, Li J, Xia Y J, Shi Z, Zhou S M 2013 Chin. Phys. B 22 117803

    [16]

    Chen W, Beaujour J M L, Loubens G, Keni A D, Sun J Z 2008 Appl. Phys. Lett. 92 012507

    [17]

    Thiyagarajah N, Bae S, Joo H W, Han Y C, Kim J 2008 Appl. Phys. Lett. 92 062504

    [18]

    Van Dijken S, Crofton M, CzaPkiewiez M, Zoladz M, Stobiecki T 2006 J. Appl.Phys. 99 083901

    [19]

    Mishra S K, Radu F, Valencia S, Schmitz D, Schierle E, Drr H A, Eberhardt W 2010 Phys. Rev. B 81 212404

    [20]

    Chen X, Liu H F, Han X F, Ji Y 2013 Acta Phys. Sin. 62 137501 (in Chinese) [陈希, 刘厚方, 韩秀峰, 姬扬 2013 62 137501]

    [21]

    Nakayama, Kai T, Shimomura N, Amano M, Kitagawa E, Nagase T, Yoshikawa M, Kishi T, Ikegawa S, Yoda H 2008 J. Appl. Phys. 103 07A710

    [22]

    Ueda K, Koyama T, Hiramatsu R, Chiba D, Fukami S, Tanigawa H, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T 2012 Appl. Phys. Lett. 100 202407

    [23]

    Ryu K-S, Thomas L, Yang S-H, Parkin S S P 2012 Appl. Phys. Express. 5 093006

    [24]

    Lavrijsen R, Haazen P P J, Mure E, Franken J H, Kohlhepp J T, Swagten H J M, Koopsmans B 2012 Appl. Phys. Lett. 100 262408

    [25]

    Tanigawa H, Ohshima N, Suzuki T, Suemitsu K, Kariyada E 2012 J. Appl. Phys., Part 1. 51 100202

    [26]

    Wang R X, Xiao Y C, Zhao J L 2014 Acta Phys. Sin. 63 217601 (in Chinese) [王日兴, 肖运昌, 赵婧莉 2014 63 217601]

    [27]

    Zhang P, Xie K X, Lin W W, Wu D, Sang H 2014 Appl. Phys. Lett. 104 082404

    [28]

    Ding Y F, Jack H, Judy, Wang J P 2005 J. Appl. Phys. 97 10J117

    [29]

    Jungblut R, oehoorn R C, Johnson M T, Johnson aan de Stegge J, Reinders A 1994 J. Appl. Phys. 75 6659

    [30]

    Fu Y Q, Liu Y, Jin C, Yu G H 2009 Acta Phys. Sin. 58 7977 (in Chinese) [付艳强, 刘洋, 金川于广华 2009 58 7977]

    [31]

    Johnsony M T, Bloemenzx P J H, Broedery F J A, Vries J J 1996 Rep. Prog. Phys. 59 1409

    [32]

    Liu S, Ju H L, Yu G H, Li B H, Chen X B 2014 Chin. J. R. Mater. 38 762 (in Chinese) [刘帅, 俱海浪, 于广华, 李宝河, 陈晓白 2014 稀有金属 38 762]

  • [1] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响.  , 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [2] 扈仕林, 刘均华, 邓志雄, 肖文, 杨瞻, 陈凯, 廖昭亮. Pt/La0.67Sr0.33MnO3异质结中的反常霍尔效应.  , 2023, 72(9): 097503. doi: 10.7498/aps.72.20221852
    [3] 祝鑫强, 王剑, 朱璨, 罗丰, 陈树权, 徐佳辉, 徐峰, 王嘉赋, 张艳, 孙志刚. Co3Sn2S2单晶的磁性和电-热输运性能.  , 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [4] 刘晓伟, 熊俊林, 王利铮, 梁世军, 程斌, 缪峰. 单晶Ta3FeS6薄膜中巨大的矫顽场.  , 2022, 71(12): 127503. doi: 10.7498/aps.71.20220699
    [5] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应.  , 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [6] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运.  , 2021, 70(7): 077501. doi: 10.7498/aps.70.20201737
    [7] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究.  , 2016, 65(24): 247502. doi: 10.7498/aps.65.247502
    [8] 于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲. Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响.  , 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [9] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究.  , 2015, 64(19): 197501. doi: 10.7498/aps.64.197501
    [10] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振.  , 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [11] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究.  , 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [12] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究.  , 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [13] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究.  , 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [14] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响.  , 2009, 58(11): 7977-7982. doi: 10.7498/aps.58.7977
    [15] 冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华. 利用FePt/Au多层膜结构制备垂直磁记录L10-FePt薄膜.  , 2009, 58(5): 3503-3508. doi: 10.7498/aps.58.3503
    [16] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置.  , 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [17] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究.  , 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [18] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系.  , 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [19] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性.  , 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] 陈慧余, 罗有泉. Ni-FeCr多层膜的磁各向异性和自旋波谱.  , 1991, 40(8): 1364-1370. doi: 10.7498/aps.40.1364
计量
  • 文章访问数:  7455
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-24
  • 修回日期:  2014-12-11
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map