Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface performance of Bi2Te3-based micro thermoelectric devices optimized synergistically by surface modification engineering

Tang Hao Bai Hui Lü Jia-Nan Hua Si-Heng Yan Yong-Gao Yang Dong-Wang Wu Jin-Song Su Xian-Li Tang Xin-Feng

Citation:

Interface performance of Bi2Te3-based micro thermoelectric devices optimized synergistically by surface modification engineering

Tang Hao, Bai Hui, Lü Jia-Nan, Hua Si-Heng, Yan Yong-Gao, Yang Dong-Wang, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng
PDF
HTML
Get Citation
  • The miniaturization of thermoelectric devices raises a strong requirement for the excellent interfacial properties of thermoelectric elements. Thus, achieving a heterogeneous interface with low interfacial contact resistivity and high interfacial bonding strength is a prerequisite for the successful fabrication of high-performance and high-reliability Bi2Te3-based micro thermoelectric devices. In this work, we adopt the acid pickling method to modify the surface structure of Bi0.4Sb1.6Te3 material to synergistically optimize the interfacial properties of Bi0.4Sb1.6Te3/Ni thermoelectric elements. The acid pickling process effectively modulates the work function of Bi0.4Sb1.6Te3 material, which dramatically reduces the contact barrier height of Ni/Bi0.4Sb1.6Te3 heterojunction from 0.22 to 0.02 eV. As a consequence, the corresponding interfacial contact resistivity of the element is greatly reduced from 14.2 to 0.22 μΩ·cm2. Moreover, the acid pickling process effectively adjusts the surface roughness of the matrix, forming a V-shaped pit of 2–5 μm in depth on the substrate surface and leading to a pinning effect. This significantly enhances the physical bonding between the material surface and the Ni layer, which, together with the metallurgical bond formed by the interfacial diffusion reaction zone of about 50-nm-thick Ni/Bi0.4Sb1.6Te3, greatly enhances the interfacial bond strength from 7.14 to 22.34 MPa. The excellent interfacial properties are further validated by the micro-thermoelectric devices. The maximum cooling temperature difference of 4.7 mm× 4.9 mm micro thermoelectric device fabricated by this process achieves 56.5 K, with hot side temperature setting at 300 K, and the maximum output power reaches 882 μW under the temperature gradient of 10 K. This work provides a new strategy for realizing the synergetic optimization of interfacial properties and opens up a new avenue for improving the performance of micro thermoelectric devices.
      Corresponding author: Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52122108, 51972256), and the National Key Research and Development Program of China (Grant No. 2019YFA0704900).
    [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, W B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [3]

    Mao J, Chen G, Ren Z 2020 Nat. Mater. 20 454Google Scholar

    [4]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [5]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [6]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdisciplin. Mater. 1 88Google Scholar

    [7]

    Venkatasubramanian R, Watkins C, Stokes D, Posthill J, Caylor C 2007 IEEE International Electron Devices Meeting Washington, USA, December 10–12, 2007, p367

    [8]

    Liu D, Zhao F Y, Yang H X, Tang G F 2015 Energy 83 29Google Scholar

    [9]

    Yan J, Liao X, Yan D, Chen Y 2018 J. Microelectromech. Syst. 27 1Google Scholar

    [10]

    Liu Q L, Li G D, Zhu H T, Zhao H Z 2022 Chin. Phys. B 31 047204Google Scholar

    [11]

    Yu Y, Guo Z, Zhu W, Zhou J, Guo S, Wang Y, Deng Y 2022 Nano Energy 93 106818Google Scholar

    [12]

    Aswal D K, Basu R, Singh A 2016 Energy Convers. Manage. 114 50Google Scholar

    [13]

    Zhang Q H, Huang X Y, Bai S Q, Shi X, Uher C, Chen L D 2016 Adv. Eng. Mater. 18 194Google Scholar

    [14]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [15]

    Liu W, Bai S 2019 J. Materiomics 5 321Google Scholar

    [16]

    胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar

    Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar

    [17]

    Hatzikraniotis E, Zorbas K, Samaras I, Kyratsi T, Paraskevopoulos K 2010 J. Electron. Mater. 39 2112Google Scholar

    [18]

    Park W, Barako M T, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p107

    [19]

    Barako M T, Park W, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p86

    [20]

    Gupta R, White J, Iyore O, Chakrabarti U, Alshareef H N, Gnade B 2009 Electrochem. Solid-State Lett. 12 H302Google Scholar

    [21]

    Iyore O D, Lee T H, Gupta R P, White J B, Alshareef H N, Kim M J, Gnade B E 2010 Surf. Interface Anal. 41 440Google Scholar

    [22]

    Feng H-P, Yu B, Chen S, Collins K, He C, Ren Z, Chen G 2011 Electrochim. Acta 56 3079Google Scholar

    [23]

    Taylor P J, Maddux J R, Meissner G, Venkatasubramanian R, Bulman G, Pierce J, Gupta R, Bierschenk J, Caylor C, D’Angelo J 2013 Appl. Phys. Lett. 103 043902Google Scholar

    [24]

    Weitzman L H 1967 US Patent 3 338 765

    [25]

    Kozlov A O, Korchagin E P, Mustafoev B R, Babich A V, Rogachev M S 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) St. Petersburg, Moscow, Russia, January 26–29, 2021, p2451

    [26]

    Vikhor L M, Anatychuk L I, Gorskyi P V 2019 J. Appl. Phys. 126 164503Google Scholar

    [27]

    Schottky W 1938 Naturwissenschaften 26 843Google Scholar

    [28]

    Monroy E, Calle F, Ranchal R, Palacios T, Moerman I 2002 Semicond. Sci. Technol. 17 L47Google Scholar

    [29]

    Kim H S, Lee K H, Yoo J, Shin W H, Roh J W, Hwang J Y, Kim S W, Kim S I 2018 J. Alloys Compd. 741 869Google Scholar

    [30]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [31]

    Tang H, Bai H, Yang X, Cao Y, Tang K, Zhang Z, Chen S, Yang D, Su X, Yan Y 2022 J. Alloys Compd. 896 163090Google Scholar

    [32]

    Liu W, Wang H, Wang L, Wang X, Joshi G, Chen G, Ren Z 2013 J. Mater. Chem. A 1 13093Google Scholar

  • 图 A1  不同酸洗时间后的材料表面3D形貌及面粗糙度Sa

    Figure A1.  3D surface topography and surface-roughness of the materials under different pickling time from 0 min to 10 min.

    图 A2  Bi2Te3基热电材料的 (a) 电导率, (b) Seebeck系数, (c) 总热导率和(d) 热电优值ZT随温度的变化

    Figure A2.  Temperature dependences of (a) electrical conductivity, (b) Seebeck coefficient, (c) total thermal conductivity and (d) ZT value for Bi2Te3-based thermoelectric materials.

    图 A3  不同酸洗时间后的Bi0.4Sb1.6Te3/Ni界面接触电阻率测试结果 (a) 0 min; (b) 2 min; (c) 4 min; (d) 6 min; (e) 8 min; (f) 10 min

    Figure A3.  The results of interfacial contact resistivity of Bi0.4Sb1.6Te3/Ni thermoelectric elements after different pickling time: (a) 0 min; (b) 2 min; (c) 4 min; (d) 6 min; (e) 8 min; (f) 10 min.

    图 A4  N-Bi2Te3/Ni热电元件的界面接触电阻率测试结果

    Figure A4.  The results of interfacial contact resistivity of N-Bi2Te3/Ni thermoelectric element.

    图 1  Bi0.4Sb1.6Te3/Ni热电元件的(a) 界面结合强度和(b) 界面接触电阻率随酸洗时间变化的关系, 其中红色虚线代表现有商业化水平; (c) 器件内阻随酸洗时间的变化关系, 其中右上角为微型热电器件实物照片; (d) 器件的最大制冷温差随酸洗时间的变化关系; 不同酸洗时间制备的器件在10 K温差下的 (e) 开路电压和(f) 输出功率随电流的变化关系

    Figure 1.  The pickling time dependences of (a) the interfacial bonding strength and (b) the interfacial contact resistivity for Bi0.4Sb1.6Te3/Ni thermoelectric elements, the red dotted line represents the commercial level. (c) The relationship between the internal resistance of the devices and the pickling time, the upper right corner is the photograph of the micro thermoelectric device; (d) the relationship between the maximum cooling temperature difference of the device and pickling time; the current dependences of (e) open-circuit voltage and (f) output power of the devices prepared by different pickling time under 10 K temperature difference.

    图 2  材料表面粗糙度随酸洗时间的变化关系

    Figure 2.  The relationship between the surface-roughness and pickling time.

    图 3  (a) 不同酸洗时间后的材料表面FESEM图像; (b) 不同酸洗时间后热电元件抛光界面FESEM图像

    Figure 3.  FESEM images of (a) materials surface and (b) polishing interface of the thermoelectric elements after different pickling time.

    图 4  (a) Bi0.4Sb1.6Te3/Ni热电元件的界面HAADF-STEM图像, 区域1和区域2分别表示界面区域和基体的选区电子衍射; (b) 界面区域的元素面分布图谱, 其中紫色为Ni, 绿色为Te, 红色为Bi和蓝色为Sb; (c)—(f) 区域1的TEM图像, 界面相为Ni3Te2 and NiTe2

    Figure 4.  (a) HAADF-STEM images of the Ni/Bi0.4Sb1.6Te3 thermoelectric element contact interface, area 1 and 2 represents the selected area electron diffraction of the interface and the matrix, respectively; (b) EDS mapping of (a), purple: Ni, green: Te, red: Bi, blue: Sb; (c)–(f) TEM images of area 1 in Figure (a) and the interface phases are Ni3Te2 and NiTe2 compounds.

    图 5  不同酸洗时间后的材料表面的(a) UPS光谱以及(b) 截止边强度的结合能微分; (c) 材料表面功函数随酸洗时间变化的关系; 酸洗8 min前后的(d) Bi0.4Sb1.6Te3/Ni热电元件的I-V曲线和(e) 能带结构示意图以及(f) 与Ni层界面接触势垒高度的变化示意图

    Figure 5.  (a) UPS spectra and (b) the binding energy differential of the cut-off edge intensity for the materials surface after different pickling time; (c) I-V curve for the Bi0.4Sb1.6Te3/Ni thermoelectric elements and (d) surface energy band structure diagram and (e) schematic diagram of the height change of the contact barrier at the interface with Ni layer before and after pickling for 8 min.

    表 A1  不同酸洗时间制备出的Bi0.4Sb1.6Te3/Ni热电元件和N-Bi2Te3/Ni热电元件的五次界面结合强度测试结果

    Table A1.  The five repeated results of interfacial bonding strength for Bi0.4Sb1.6Te3/Ni thermoelectric elements with different pickling time and N-Bi2Te3/Ni thermoelectric elements.

    Sample1#2#3#4#5#Average/MPa
    0 min7.256.757.506.937.277.14
    2 min14.0013.7313.2513.7513.5013.65
    4 min16.2514.7514.9515.5015.0015.29
    6 min17.5518.0817.2514.7516.0016.73
    8 min22.0520.7523.7523.2521.9022.34
    10 min13.1314.2812.0013.0313.7513.24
    N-Bi2Te3/Ni14.3313.8516.4014.2816.8015.13
    DownLoad: CSV
    Baidu
  • [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, W B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [3]

    Mao J, Chen G, Ren Z 2020 Nat. Mater. 20 454Google Scholar

    [4]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [5]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [6]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdisciplin. Mater. 1 88Google Scholar

    [7]

    Venkatasubramanian R, Watkins C, Stokes D, Posthill J, Caylor C 2007 IEEE International Electron Devices Meeting Washington, USA, December 10–12, 2007, p367

    [8]

    Liu D, Zhao F Y, Yang H X, Tang G F 2015 Energy 83 29Google Scholar

    [9]

    Yan J, Liao X, Yan D, Chen Y 2018 J. Microelectromech. Syst. 27 1Google Scholar

    [10]

    Liu Q L, Li G D, Zhu H T, Zhao H Z 2022 Chin. Phys. B 31 047204Google Scholar

    [11]

    Yu Y, Guo Z, Zhu W, Zhou J, Guo S, Wang Y, Deng Y 2022 Nano Energy 93 106818Google Scholar

    [12]

    Aswal D K, Basu R, Singh A 2016 Energy Convers. Manage. 114 50Google Scholar

    [13]

    Zhang Q H, Huang X Y, Bai S Q, Shi X, Uher C, Chen L D 2016 Adv. Eng. Mater. 18 194Google Scholar

    [14]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [15]

    Liu W, Bai S 2019 J. Materiomics 5 321Google Scholar

    [16]

    胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar

    Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar

    [17]

    Hatzikraniotis E, Zorbas K, Samaras I, Kyratsi T, Paraskevopoulos K 2010 J. Electron. Mater. 39 2112Google Scholar

    [18]

    Park W, Barako M T, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p107

    [19]

    Barako M T, Park W, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p86

    [20]

    Gupta R, White J, Iyore O, Chakrabarti U, Alshareef H N, Gnade B 2009 Electrochem. Solid-State Lett. 12 H302Google Scholar

    [21]

    Iyore O D, Lee T H, Gupta R P, White J B, Alshareef H N, Kim M J, Gnade B E 2010 Surf. Interface Anal. 41 440Google Scholar

    [22]

    Feng H-P, Yu B, Chen S, Collins K, He C, Ren Z, Chen G 2011 Electrochim. Acta 56 3079Google Scholar

    [23]

    Taylor P J, Maddux J R, Meissner G, Venkatasubramanian R, Bulman G, Pierce J, Gupta R, Bierschenk J, Caylor C, D’Angelo J 2013 Appl. Phys. Lett. 103 043902Google Scholar

    [24]

    Weitzman L H 1967 US Patent 3 338 765

    [25]

    Kozlov A O, Korchagin E P, Mustafoev B R, Babich A V, Rogachev M S 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) St. Petersburg, Moscow, Russia, January 26–29, 2021, p2451

    [26]

    Vikhor L M, Anatychuk L I, Gorskyi P V 2019 J. Appl. Phys. 126 164503Google Scholar

    [27]

    Schottky W 1938 Naturwissenschaften 26 843Google Scholar

    [28]

    Monroy E, Calle F, Ranchal R, Palacios T, Moerman I 2002 Semicond. Sci. Technol. 17 L47Google Scholar

    [29]

    Kim H S, Lee K H, Yoo J, Shin W H, Roh J W, Hwang J Y, Kim S W, Kim S I 2018 J. Alloys Compd. 741 869Google Scholar

    [30]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [31]

    Tang H, Bai H, Yang X, Cao Y, Tang K, Zhang Z, Chen S, Yang D, Su X, Yan Y 2022 J. Alloys Compd. 896 163090Google Scholar

    [32]

    Liu W, Wang H, Wang L, Wang X, Joshi G, Chen G, Ren Z 2013 J. Mater. Chem. A 1 13093Google Scholar

  • [1] Ke Shao-Qiu, Ye Xian-Feng, Zhang Hao-Jun, Nie Xiao-Lei, Chen Tian-Tian, Liu Cheng-Shan, Zhu Wan-Ting, Wei Ping, Zhao Wen-Yu. xFe/Bi0.5Sb1.5Te3 thermoelectromagnetic films with coexistence of positive and negative magnetoresistance. Acta Physica Sinica, 2024, 73(22): 227301. doi: 10.7498/aps.73.20240701
    [2] Hu Xue-Lan, Sun Xiao-Qing, Wang Meng-Yuan, Wang Ya-Ru. Effect of Ta and Re on the fracture strength and creep strength of Ni/Ni3Al interface. Acta Physica Sinica, 2023, 72(6): 063101. doi: 10.7498/aps.72.20222103
    [3] Li Qiang, Chen Shuo, Liu Ke-Ke, Lu Zhi-Qiang, Hu Qin, Feng Li-Ping, Zhang Qing-Jie, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Donor-like effect and thermoelectric properties in n-type Bi2Te3-based compounds. Acta Physica Sinica, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [4] Nie Xiao-Lei, Yu Hao-Cheng, Zhu Wan-Ting, Sang Xia-Han, Wei Ping, Zhao Wen-Yu. Design, fabrication and performance evaluation of graphene/Bi0.5Sb1.5Te3 flexible thermoelectric films and in-plane heat dissipation devices. Acta Physica Sinica, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [5] Chen Yun-Fei, Wei Feng, Wang He, Zhao Wei-Yun, Deng Yuan. Structural control for high performance Bi2Te3–xSex thermoelectric thin films. Acta Physica Sinica, 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [6] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [7] Wu Fang, Wang Wei. Thermoelectric properties of the Bi2Te3 nanocrystalline bulk alloy pressed by the high-pressure sintering. Acta Physica Sinica, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [8] Jian Xiao-Gang, Chen Jun. The Influence of Co binding phase on adhesive strength of diamond coating with cemented carbide substrate. Acta Physica Sinica, 2015, 64(21): 216701. doi: 10.7498/aps.64.216701
    [9] Wei Zheng-Hong, Yun Feng, Ding Wen, Huang Ya-Ping, Wang Hong, Li Qiang, Zhang Ye, Guo Mao-Feng, Liu Shuo, Wu Hong-Bin. Reflective Ni/Ag/Ti/Au electrode with low specific contact resistivity. Acta Physica Sinica, 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [10] Ding Yue, Shen Jie, Pang Yuan, Liu Guang-Tong, Fan Jie, Ji Zhong-Qing, Yang Chang-Li, Lü Li. Proximity-effect-induced superconductivity by granular Pb film on the surface of Bi2Te3 topological insulator. Acta Physica Sinica, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [11] Fan Ping, Cai Zhao-Kun, Zheng Zhuang-Hao, Zhang Dong-Ping, Cai Xing-Min, Chen Tian-Bao. Fabrication and characterization of Bi-Sb-Te based thin film thermoelectric generator prepared by ion beam sputtering deposition. Acta Physica Sinica, 2011, 60(9): 098402. doi: 10.7498/aps.60.098402
    [12] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [13] Jiang Ming-Bo, Wu Zhi-Xiong, Zhou Min, Huang Rong-Jin, Li Lai-Feng. Cryogenic thermoelectric properties of BiTe-based alloys and cryo-energy power generation. Acta Physica Sinica, 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [14] Mu Wu-Di, Cheng Hai-Feng, Chen Zhao-Hui, Tang Geng-Ping, Wu Zhi-Qiao. Effect of rough interface on the thermoelectric figure of merit of the Bi2Te3/PbTe superlattice. Acta Physica Sinica, 2009, 58(2): 1212-1218. doi: 10.7498/aps.58.1212
    [15] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Zhang Lei-Hong, Ge Tao. Study on the determination of interfacial binding strength of coatings (Ⅰ): theorctical analysis of stress in thin film binding interface. Acta Physica Sinica, 2006, 55(6): 2897-2900. doi: 10.7498/aps.55.2897
    [16] Hu Jian-Min, Xin Jiang-Bo, Lü Qiang, Wang Yue-Yuan, Rong Jian-Ying. Powders (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x prepared by mechanical alloying and thermoelectric properties of cold-pressed and s. Acta Physica Sinica, 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [17] Jiang Jun, Xu Gao-Jie, Cui Ping, Chen Li-Dong. Dependence of thermoelectric properties of n-type Bi2Te3-based sintered materials on the TeI4 doping content. Acta Physica Sinica, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [18] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Ge Tao. Study on the detection of interfacial bonding strength of coatings (Ⅱ): detecting system of bonding strength. Acta Physica Sinica, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [19] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [20] ZHANG LIU-WAN, CHEN TING-GUO. STUDY ON THE HIGH-TEMPERATURE RESISTIVITY OF Bi1.6Pb0.4Sr2Ca2Cu3Ox. Acta Physica Sinica, 1998, 47(11): 1906-1911. doi: 10.7498/aps.47.1906
Metrics
  • Abstract views:  4414
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2022
  • Accepted Date:  04 May 2022
  • Available Online:  08 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回
Baidu
map