搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米带的制备与电学特性调控

张辉 蔡晓明 郝振亮 阮子林 卢建臣 蔡金明

引用本文:
Citation:

石墨烯纳米带的制备与电学特性调控

张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明

Fabrication and electrical engineering of graphene nanoribbons

Zhang Hui, Cai Xiao-Ming, Hao Zhen-Liang, Ruan Zi-Lin, Lu Jian-Chen, Cai Jin-Ming
PDF
导出引用
  • 石墨烯由于其独特的晶体结构展现出了特殊的电学特性,其导带与价带相交于第一布里渊区的六个顶点处,形成带隙为零的半金属材料,具有优异的电子传输特性的同时也限制了其在电子学器件中的使用.因而科研人员尝试各种方法来打开其带隙并调控其能带特性,主要有利用缺陷、应力、掺杂、表面吸附、结构调控等手段.其中石墨烯纳米带由于量子边界效应和限制效应,存在带隙.本综述主要介绍了制备各类石墨烯纳米带的方法,并通过精确调控其细微结构,从而对其进行精确的能带调控,改变其电学特性,为其在电子学器件中的应用提供一些可行的方向.
    Graphene, as a typical representative of advanced materials, exhibits excellent electronical properties due to its unique and unusual crystal structure. The valence band and conduction band of pristine graphene meet at the corners of the Brillouin zone, leading to a half-metal material with zero bandgap. However, although the extraordinary electronical properties make graphene possess excellent electrical conductivity, it also restricts its applications in electronic devices, which usually needs an appropriate bandgap. Therefore, opening and tuning the bandgap of graphene has aroused great scientific interest. To date, many efforts have been made to open the bandgap of graphene, including defects, strain, doping, surface adsorptions, structure tunning, etc. Among these methods, graphene nanoribbon, the quasi-one-dimensional strips of graphene with finite width ( 10 nm) and high aspect ratios, possesses a band gap opening at the Dirac point due to the quantum confinement effects. Thus, graphene nanoribbon has been considered as one of the most promising candidates for the future electronic devices due to its unique electronic and magnetic properties. Specifically, the band gap of graphene nanoribbons is strongly dependent on the lateral size and the edge geometry, which has attracted tremendous attention. Furthermore, it has been reported that armchair graphene nanoribbons possess gaps inversely proportional to their width, and numerous efforts have been devoted to fabricating the graphene nanoribbons with different widths by top-down or bottom-up approaches. Moreover, based on the on-surface reaction, the bottom-up approach shows the capability of controlling the width and edge structures, and it is almost contamination-free processing, which is suitable to performing further characterizations. Ultra-high-vacuum scanning tunneling microscope is a valid tool to fabricate and characterize the graphene nanorribons, and it can also obtain the band structure information when combined with the scanning tunneling spectroscopy. Taking the advantage of the bottom-up synthetic technique, the nearly perfect graphene nanoribbons can be fabricated based on the organic molecule reaction on surface, which is a promising strategy to study the original electronic properties. To precisely tuning the band engineering of graphene nanoribbons, the researchers have adopted various effective methods, such as changing the widths and topological morphologies of graphene nanoribbons, doping the graphene nanoribbons with heteroatoms, fabricating the heterojunctions under a controlable condition. The precise control of graphene synthesis is therefore crucial for probing their fundamental physical properties. Here we highlight the methods of fabricating the graphene nanoribbons and the precise tuning of graphene bandgap structure in order to provide a feasible way to put them into application.
      通信作者: 蔡金明, j.cai@kmust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674136)和云南省中青年学术带头人预备人才项目(批准号:2017HB010)资助的课题.
      Corresponding author: Cai Jin-Ming, j.cai@kmust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674136) and the Preparatory Talent Project for the Academic Leaders of Yunnan Province, China (Contract No. 2017HB010).
    [1]

    Novoselov K S, Gei A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [3]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706

    [4]

    Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Compos. Sci. Technol. 72 1459

    [7]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [8]

    Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. 114 6610

    [9]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939

    [10]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52

    [11]

    Xu Y, Shi G 2011 J. Mater. Chem. 21 3311

    [12]

    Zhu H W, Xu Z P, Xie D 2011 Graphene-Structure, Preparation Methods and Properties Characterization (Beijing: Tsinghua University Press) pp120-121 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011 石墨烯: 结构、制备方法与性能表征 (北京: 清华大学出版社) 第120121页]

    [13]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Ugeda M M, Brihuega I, Guinea F, Gmez-Rodrguez J M 2010 Phys. Rev. Lett. 104 096804

    [15]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326

    [16]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219

    [17]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [18]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806

    [19]

    Xu Y, Bai H, Lu G, Li C, Shi G 2008 J. Am. Chem. Soc. 130 5856

    [20]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [21]

    Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy Arava L M, Ajayan P M 2012 J. Phys. Chem. Lett. 3 986

    [22]

    Dos Santos J M B L, Peres N M R, Neto A H C 2007 Phys. Rev. Lett. 99 256802

    [23]

    Wu Z S, Ren W, Gao L, Liu B, Zhao J, Cheng H M 2010 Nano Res. 3 16

    [24]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [25]

    Pan M, Girao E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S 2012 Nano Lett. 12 1928

    [26]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [27]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K, Fasel R 2010 Nature 466 470

    [28]

    Radocea A, Sun T, Vo T H, Sinitskii A, Aluru N R, Lyding J W 2017 Nano Lett. 17 170

    [29]

    Tapaszt L, Dobrik G, Lambin P, Bir L P 2008 Nat. Nanotechnol. 3 397

    [30]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [31]

    Cano-Mrquez A G, Rodrguez-Macas F J, Campos-Delgado J, Espinosa-Gonzlez C G, Tristn-Lpez F, Ramrez-Gonzlez D, Cullen D A, Smith D J, Terrones M, Vega-Cant Y I 2009 Nano Lett. 9 1527

    [32]

    Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M 2011 ACS Nano 5 968

    [33]

    Elas A L, Botello-Mndez A R, Meneses-Rodrguez D, Gonzlez V J, Ramrez-Gonzlez D, Ci L, Muoz-Sandoval E, Ajayan P M, Terrones H, Terrones M 2010 Nano Lett. 10 366

    [34]

    Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A 2011 Nanoscale 3 3876

    [35]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321

    [36]

    Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K 2011 J. Am. Chem. Soc. 133 4168

    [37]

    Kumar P, Panchakarla L S, Rao C N R 2011 Nanoscale 3 2127

    [38]

    Paiva M C, Xu W, Fernanda Proena M, Novais R M, Lgsgaard E, Besenbacher F 2010 Nano Lett. 10 1764

    [39]

    Ma L, Wang J, Ding F 2013 Chem. Phys. Chem. 14 47

    [40]

    Vitchev R, Malesevic A, Petrov R H, Kemps R, Mertens M, Vanhulsel A, Haesendonck C V 2010 Nanotechnology 21 095602

    [41]

    Marchini S, Gnther S, Wintterlin J 2007 Phys. Rev. B 76 075429

    [42]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [43]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [44]

    Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T 2014 Adv. Mater. 26 4134

    [45]

    Tanaka K, Yamashita S, Yamabe H, Yamabe T 1987 Synthetic Met. 17 143

    [46]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [47]

    Chen Z, Zhang W, Palma C A, Rizzini A L, Liu B, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Klui M, Candini A, Affronte M, Zhou C, Renzi V D, Pennino U, Barth J V, Rder H J, Narita A, Feng X, Mllen K 2016 J. Am. Chem. Soc. 138 15488

    [48]

    Chen Z, Wang H I, Teyssandier J, Mali K S, Dumslaff T, Ivanov I, Zhang W, Ruffieux P, Fasel R, Rder H J, Turchinovich D, Feyter S D, Feng X, Klui M, Narita A, Bonn M, Mllen K 2017 J. Am. Chem. Soc. 139 3635

    [49]

    Ma C, Xiao Z, Zhang H, Liang L, Huang J, Lu W, Sumpter B G, Hong K, Bernholc J, Li A P 2017 Nature Commun. 8 14815

    [50]

    Vo T H, Perera U G, Shekhirev M, Mehdi P M, Kunkel D A, Lu H, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P 2015 Nano Lett. 15 5770

    [51]

    Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sde H, Liang L, Meunier V, Berger R, Li R, Feng X, Mllen K, Fasel R 2014 Nat. Nanotechnol. 9 896

    [52]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442

    [53]

    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Mllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022

    [54]

    Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177

    [55]

    Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802

    [56]

    Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Mllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930

    [57]

    Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380

    [58]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123

    [59]

    Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187

    [60]

    Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983

    [61]

    Dutta S, Wakabayashi K 2012 Sci. Rep. 2 519

    [62]

    Yang L, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [63]

    Yazyev O V 2013 Chem. Res. 46 2319

    [64]

    Ruffieux P, Wang S, Yang B, Snchez-Snchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mllen K, Fasel R 2016 Nature 531 489

    [65]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]

    [66]

    Snchez-Snchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Mllen K, Fasel R 2016 ACS Nano 10 8006

    [67]

    de Oteyza D G, Garca-Lekue A, Vilas-Varela M, Merino-Dez N, Carbonell-Sanrom E, Corso M, Vasseur G, Rogero C, Guitin E, Pascual J I, Ortega J E, Wakayama Y, Pea D 2016 ACS Nano 10 9000

    [68]

    Bronner C, Stremlau S, Gille M, Braue F, Haase A, Hecht S, Tegeder P 2013 Angew. Chem. Int. Edit. 52 4422

    [69]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

    [70]

    Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E 2015 Nat. Commun. 6 8089

    [71]

    Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F 2016 J. Phys. Chem. C 120 2684

    [72]

    Carbonell-Sanrom E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragn A, Li J, Abadia M, Corso M, Snchez-Portal D, Pea D, Ignacio Pascual J 2017 ACS Nano 11 7355

    [73]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [74]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103]

    [75]

    Bennett P B, Pedramrazi Z, Madani A, Chen Y C, de Oteyza D G, Chen C, Fischer F R, Crommie M F, Bokor J 2013 Appl. Phys. Lett. 103 253114

    [76]

    Llinas J P, Fairbrother A, Barin G, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mllen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633

    [77]

    Smith S, Llins J P, Bokor J, Salahuddin S 2017 arXiv: 1703.05875 [cond-mat.mes-hall]

    [78]

    Berahman M, Sheikhi M H 2015 Sensor. Actuat. B: Chem. 219 338

    [79]

    Lu Y, Guo J 2010 Nano Res. 3 189

    [80]

    Huang B, Liu F, Wu J, Gu B L, Duan W 2008 Phys. Rev. B 77 153411

    [81]

    Guo J, Gunlycke D, White C T 2008 Appl. Phys. Lett. 92 163109

  • [1]

    Novoselov K S, Gei A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [3]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi T Y, Hong B H 2009 Nature 457 706

    [4]

    Balandin A A, Ghost S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [6]

    Young R J, Kinloch I A, Gong L, Novoselov K S 2012 Compos. Sci. Technol. 72 1459

    [7]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [8]

    Joshi R K, Gomez H, Alvi F, Kumar A 2010 J. Phys. Chem. 114 6610

    [9]

    Traversi F, Raillon C, Benameur S M, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A 2013 Nat. Nanotechnol. 8 939

    [10]

    Choi W, Lahiri I, Seelaboyina R, Kang Y S 2010 Crit. Rev. Solid State 35 52

    [11]

    Xu Y, Shi G 2011 J. Mater. Chem. 21 3311

    [12]

    Zhu H W, Xu Z P, Xie D 2011 Graphene-Structure, Preparation Methods and Properties Characterization (Beijing: Tsinghua University Press) pp120-121 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011 石墨烯: 结构、制备方法与性能表征 (北京: 清华大学出版社) 第120121页]

    [13]

    Castro N A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [14]

    Ugeda M M, Brihuega I, Guinea F, Gmez-Rodrguez J M 2010 Phys. Rev. Lett. 104 096804

    [15]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326

    [16]

    Rutter G M, Crain J N, Guisinger N P, Li T, First P N, Stroscio J A 2007 Science 317 219

    [17]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [18]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806

    [19]

    Xu Y, Bai H, Lu G, Li C, Shi G 2008 J. Am. Chem. Soc. 130 5856

    [20]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [21]

    Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy Arava L M, Ajayan P M 2012 J. Phys. Chem. Lett. 3 986

    [22]

    Dos Santos J M B L, Peres N M R, Neto A H C 2007 Phys. Rev. Lett. 99 256802

    [23]

    Wu Z S, Ren W, Gao L, Liu B, Zhao J, Cheng H M 2010 Nano Res. 3 16

    [24]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [25]

    Pan M, Girao E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S 2012 Nano Lett. 12 1928

    [26]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [27]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mllen K, Fasel R 2010 Nature 466 470

    [28]

    Radocea A, Sun T, Vo T H, Sinitskii A, Aluru N R, Lyding J W 2017 Nano Lett. 17 170

    [29]

    Tapaszt L, Dobrik G, Lambin P, Bir L P 2008 Nat. Nanotechnol. 3 397

    [30]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [31]

    Cano-Mrquez A G, Rodrguez-Macas F J, Campos-Delgado J, Espinosa-Gonzlez C G, Tristn-Lpez F, Ramrez-Gonzlez D, Cullen D A, Smith D J, Terrones M, Vega-Cant Y I 2009 Nano Lett. 9 1527

    [32]

    Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M 2011 ACS Nano 5 968

    [33]

    Elas A L, Botello-Mndez A R, Meneses-Rodrguez D, Gonzlez V J, Ramrez-Gonzlez D, Ci L, Muoz-Sandoval E, Ajayan P M, Terrones H, Terrones M 2010 Nano Lett. 10 366

    [34]

    Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A 2011 Nanoscale 3 3876

    [35]

    Jiao L, Wang X, Diankov G, Wang H, Dai H 2010 Nat. Nanotechnol. 5 321

    [36]

    Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K 2011 J. Am. Chem. Soc. 133 4168

    [37]

    Kumar P, Panchakarla L S, Rao C N R 2011 Nanoscale 3 2127

    [38]

    Paiva M C, Xu W, Fernanda Proena M, Novais R M, Lgsgaard E, Besenbacher F 2010 Nano Lett. 10 1764

    [39]

    Ma L, Wang J, Ding F 2013 Chem. Phys. Chem. 14 47

    [40]

    Vitchev R, Malesevic A, Petrov R H, Kemps R, Mertens M, Vanhulsel A, Haesendonck C V 2010 Nanotechnology 21 095602

    [41]

    Marchini S, Gnther S, Wintterlin J 2007 Phys. Rev. B 76 075429

    [42]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [43]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [44]

    Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T 2014 Adv. Mater. 26 4134

    [45]

    Tanaka K, Yamashita S, Yamabe H, Yamabe T 1987 Synthetic Met. 17 143

    [46]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [47]

    Chen Z, Zhang W, Palma C A, Rizzini A L, Liu B, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Klui M, Candini A, Affronte M, Zhou C, Renzi V D, Pennino U, Barth J V, Rder H J, Narita A, Feng X, Mllen K 2016 J. Am. Chem. Soc. 138 15488

    [48]

    Chen Z, Wang H I, Teyssandier J, Mali K S, Dumslaff T, Ivanov I, Zhang W, Ruffieux P, Fasel R, Rder H J, Turchinovich D, Feyter S D, Feng X, Klui M, Narita A, Bonn M, Mllen K 2017 J. Am. Chem. Soc. 139 3635

    [49]

    Ma C, Xiao Z, Zhang H, Liang L, Huang J, Lu W, Sumpter B G, Hong K, Bernholc J, Li A P 2017 Nature Commun. 8 14815

    [50]

    Vo T H, Perera U G, Shekhirev M, Mehdi P M, Kunkel D A, Lu H, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P 2015 Nano Lett. 15 5770

    [51]

    Cai J, Pignedoli C A, Talirz L, Ruffieux P, Sde H, Liang L, Meunier V, Berger R, Li R, Feng X, Mllen K, Fasel R 2014 Nat. Nanotechnol. 9 896

    [52]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442

    [53]

    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Mllen K, Fuchs H, Chi L 2015 J. Am. Chem. Soc. 137 4022

    [54]

    Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P 2015 Nat. Commun. 6 10177

    [55]

    Basagni A, Sedona F, Pignedoli C A, Cattelan M, Nicolas L, Casarin M, Sambi M 2015 J. Am. Chem. Soc. 137 1802

    [56]

    Ruffieux P, Cai J, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Mllen K, Pignedoli C A, Fasel R 2012 ACS Nano 6 6930

    [57]

    Talirz L, Sode H, Dumslaff T, Wang S, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L, Meunier V, Plumb N C, Shi M, Feng X, Narita A, Mllen K, Fasel R, Ruffieux P 2017 ACS Nano 11 1380

    [58]

    Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123

    [59]

    Abdurakhmanova N, Amsharov N, Stepanow S, Jansen M, Kern K, Amsharov K 2014 Carbon 77 1187

    [60]

    Huang H, Wei D, Sun J, Wong S L, Feng Y P, Neto A H C, Wee A T S 2012 Sci. Rep. 2 983

    [61]

    Dutta S, Wakabayashi K 2012 Sci. Rep. 2 519

    [62]

    Yang L, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 186401

    [63]

    Yazyev O V 2013 Chem. Res. 46 2319

    [64]

    Ruffieux P, Wang S, Yang B, Snchez-Snchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mllen K, Fasel R 2016 Nature 531 489

    [65]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]

    [66]

    Snchez-Snchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Mllen K, Fasel R 2016 ACS Nano 10 8006

    [67]

    de Oteyza D G, Garca-Lekue A, Vilas-Varela M, Merino-Dez N, Carbonell-Sanrom E, Corso M, Vasseur G, Rogero C, Guitin E, Pascual J I, Ortega J E, Wakayama Y, Pea D 2016 ACS Nano 10 9000

    [68]

    Bronner C, Stremlau S, Gille M, Braue F, Haase A, Hecht S, Tegeder P 2013 Angew. Chem. Int. Edit. 52 4422

    [69]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

    [70]

    Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E 2015 Nat. Commun. 6 8089

    [71]

    Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F 2016 J. Phys. Chem. C 120 2684

    [72]

    Carbonell-Sanrom E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragn A, Li J, Abadia M, Corso M, Snchez-Portal D, Pea D, Ignacio Pascual J 2017 ACS Nano 11 7355

    [73]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [74]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 60 097103]

    [75]

    Bennett P B, Pedramrazi Z, Madani A, Chen Y C, de Oteyza D G, Chen C, Fischer F R, Crommie M F, Bokor J 2013 Appl. Phys. Lett. 103 253114

    [76]

    Llinas J P, Fairbrother A, Barin G, Shi W, Lee K, Wu S, Choi B Y, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mllen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J 2017 Nat. Commun. 8 633

    [77]

    Smith S, Llins J P, Bokor J, Salahuddin S 2017 arXiv: 1703.05875 [cond-mat.mes-hall]

    [78]

    Berahman M, Sheikhi M H 2015 Sensor. Actuat. B: Chem. 219 338

    [79]

    Lu Y, Guo J 2010 Nano Res. 3 189

    [80]

    Huang B, Liu F, Wu J, Gu B L, Duan W 2008 Phys. Rev. B 77 153411

    [81]

    Guo J, Gunlycke D, White C T 2008 Appl. Phys. Lett. 92 163109

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器.  , 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] 黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠. In2Se3薄膜的掺杂效应及其纳米带铁电性.  , 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [4] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光.  , 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [5] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [6] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析.  , 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [7] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析.  , 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [8] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究.  , 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [9] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用.  , 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [10] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究.  , 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [11] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究.  , 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析.  , 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [13] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究.  , 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [14] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析.  , 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [15] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰. 石墨烯纳米结构的制备及带隙调控研究.  , 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [16] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流.  , 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [17] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究.  , 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [18] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [19] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算.  , 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [20] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究.  , 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
计量
  • 文章访问数:  8923
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2017-09-25
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map