搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能

唐昊 白辉 吕嘉南 华思恒 鄢永高 杨东旺 吴劲松 苏贤礼 唐新峰

引用本文:
Citation:

表面修饰工程协同优化Bi2Te3基微型热电器件的界面性能

唐昊, 白辉, 吕嘉南, 华思恒, 鄢永高, 杨东旺, 吴劲松, 苏贤礼, 唐新峰

Interface performance of Bi2Te3-based micro thermoelectric devices optimized synergistically by surface modification engineering

Tang Hao, Bai Hui, Lü Jia-Nan, Hua Si-Heng, Yan Yong-Gao, Yang Dong-Wang, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng
PDF
HTML
导出引用
  • 热电器件微型化对组成热电元件的界面性能提出了更高要求, 获得低的界面接触电阻率和高的界面结合强度的异质结合界面, 是成功制备高性能、高可靠性Bi2Te3基微型热电器件的前提条件. 本研究采用酸洗方法对Bi0.4Sb1.6Te3材料进行表面修饰, 实现了Bi0.4Sb1.6Te3/Ni热电元件界面性能的协同优化. 酸洗过程有效调控了Bi0.4Sb1.6Te3材料的表面功函数, 显著降低了Ni层与Bi0.4Sb1.6Te3材料间的接触势垒, 从未酸洗处理的0.22 eV降至0.02 eV, 势垒的降低使界面接触电阻率从未酸洗处理的14.2 μΩ·cm2大幅降至0.22 μΩ·cm2. 此外, 酸洗过程还能有效调控基体表面粗糙度, 在基体表面形成2—5 μm的V型凹坑, 产生钉扎效应, 极大地增强了材料表面与Ni层的物理结合, 与约50 nm厚Ni/Bi0.4Sb1.6Te3界面扩散反应区形成的冶金结合共同作用, 使界面结合强度从未酸洗处理的7.14 MPa大幅增至22.34 MPa. 这种优异的界面性能在微型热电器件中得到了进一步证实, 采用该工艺处理后热电元件制备的4.7 × 4.9 mm2微型热电器件, 在热面温度300 K下的最大制冷温差达到56.5 K, 在10 K温差下最大输出功率达到882 μW. 该研究为实现界面性能的协同优化提供了一种新策略, 并为微型热电器件的性能优化开辟了新途径.
    The miniaturization of thermoelectric devices raises a strong requirement for the excellent interfacial properties of thermoelectric elements. Thus, achieving a heterogeneous interface with low interfacial contact resistivity and high interfacial bonding strength is a prerequisite for the successful fabrication of high-performance and high-reliability Bi2Te3-based micro thermoelectric devices. In this work, we adopt the acid pickling method to modify the surface structure of Bi0.4Sb1.6Te3 material to synergistically optimize the interfacial properties of Bi0.4Sb1.6Te3/Ni thermoelectric elements. The acid pickling process effectively modulates the work function of Bi0.4Sb1.6Te3 material, which dramatically reduces the contact barrier height of Ni/Bi0.4Sb1.6Te3 heterojunction from 0.22 to 0.02 eV. As a consequence, the corresponding interfacial contact resistivity of the element is greatly reduced from 14.2 to 0.22 μΩ·cm2. Moreover, the acid pickling process effectively adjusts the surface roughness of the matrix, forming a V-shaped pit of 2–5 μm in depth on the substrate surface and leading to a pinning effect. This significantly enhances the physical bonding between the material surface and the Ni layer, which, together with the metallurgical bond formed by the interfacial diffusion reaction zone of about 50-nm-thick Ni/Bi0.4Sb1.6Te3, greatly enhances the interfacial bond strength from 7.14 to 22.34 MPa. The excellent interfacial properties are further validated by the micro-thermoelectric devices. The maximum cooling temperature difference of 4.7 mm× 4.9 mm micro thermoelectric device fabricated by this process achieves 56.5 K, with hot side temperature setting at 300 K, and the maximum output power reaches 882 μW under the temperature gradient of 10 K. This work provides a new strategy for realizing the synergetic optimization of interfacial properties and opens up a new avenue for improving the performance of micro thermoelectric devices.
      通信作者: 唐新峰, tangxf@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52122108, 51972256)和国家重点研发计划项目(批准号: 2019YFA0704900)资助的课题.
      Corresponding author: Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52122108, 51972256), and the National Key Research and Development Program of China (Grant No. 2019YFA0704900).
    [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, W B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [3]

    Mao J, Chen G, Ren Z 2020 Nat. Mater. 20 454Google Scholar

    [4]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [5]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [6]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdisciplin. Mater. 1 88Google Scholar

    [7]

    Venkatasubramanian R, Watkins C, Stokes D, Posthill J, Caylor C 2007 IEEE International Electron Devices Meeting Washington, USA, December 10–12, 2007, p367

    [8]

    Liu D, Zhao F Y, Yang H X, Tang G F 2015 Energy 83 29Google Scholar

    [9]

    Yan J, Liao X, Yan D, Chen Y 2018 J. Microelectromech. Syst. 27 1Google Scholar

    [10]

    Liu Q L, Li G D, Zhu H T, Zhao H Z 2022 Chin. Phys. B 31 047204Google Scholar

    [11]

    Yu Y, Guo Z, Zhu W, Zhou J, Guo S, Wang Y, Deng Y 2022 Nano Energy 93 106818Google Scholar

    [12]

    Aswal D K, Basu R, Singh A 2016 Energy Convers. Manage. 114 50Google Scholar

    [13]

    Zhang Q H, Huang X Y, Bai S Q, Shi X, Uher C, Chen L D 2016 Adv. Eng. Mater. 18 194Google Scholar

    [14]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [15]

    Liu W, Bai S 2019 J. Materiomics 5 321Google Scholar

    [16]

    胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar

    Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar

    [17]

    Hatzikraniotis E, Zorbas K, Samaras I, Kyratsi T, Paraskevopoulos K 2010 J. Electron. Mater. 39 2112Google Scholar

    [18]

    Park W, Barako M T, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p107

    [19]

    Barako M T, Park W, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p86

    [20]

    Gupta R, White J, Iyore O, Chakrabarti U, Alshareef H N, Gnade B 2009 Electrochem. Solid-State Lett. 12 H302Google Scholar

    [21]

    Iyore O D, Lee T H, Gupta R P, White J B, Alshareef H N, Kim M J, Gnade B E 2010 Surf. Interface Anal. 41 440Google Scholar

    [22]

    Feng H-P, Yu B, Chen S, Collins K, He C, Ren Z, Chen G 2011 Electrochim. Acta 56 3079Google Scholar

    [23]

    Taylor P J, Maddux J R, Meissner G, Venkatasubramanian R, Bulman G, Pierce J, Gupta R, Bierschenk J, Caylor C, D’Angelo J 2013 Appl. Phys. Lett. 103 043902Google Scholar

    [24]

    Weitzman L H 1967 US Patent 3 338 765

    [25]

    Kozlov A O, Korchagin E P, Mustafoev B R, Babich A V, Rogachev M S 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) St. Petersburg, Moscow, Russia, January 26–29, 2021, p2451

    [26]

    Vikhor L M, Anatychuk L I, Gorskyi P V 2019 J. Appl. Phys. 126 164503Google Scholar

    [27]

    Schottky W 1938 Naturwissenschaften 26 843Google Scholar

    [28]

    Monroy E, Calle F, Ranchal R, Palacios T, Moerman I 2002 Semicond. Sci. Technol. 17 L47Google Scholar

    [29]

    Kim H S, Lee K H, Yoo J, Shin W H, Roh J W, Hwang J Y, Kim S W, Kim S I 2018 J. Alloys Compd. 741 869Google Scholar

    [30]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [31]

    Tang H, Bai H, Yang X, Cao Y, Tang K, Zhang Z, Chen S, Yang D, Su X, Yan Y 2022 J. Alloys Compd. 896 163090Google Scholar

    [32]

    Liu W, Wang H, Wang L, Wang X, Joshi G, Chen G, Ren Z 2013 J. Mater. Chem. A 1 13093Google Scholar

  • 图 A1  不同酸洗时间后的材料表面3D形貌及面粗糙度Sa

    Fig. A1.  3D surface topography and surface-roughness of the materials under different pickling time from 0 min to 10 min.

    图 A2  Bi2Te3基热电材料的 (a) 电导率, (b) Seebeck系数, (c) 总热导率和(d) 热电优值ZT随温度的变化

    Fig. A2.  Temperature dependences of (a) electrical conductivity, (b) Seebeck coefficient, (c) total thermal conductivity and (d) ZT value for Bi2Te3-based thermoelectric materials.

    图 A3  不同酸洗时间后的Bi0.4Sb1.6Te3/Ni界面接触电阻率测试结果 (a) 0 min; (b) 2 min; (c) 4 min; (d) 6 min; (e) 8 min; (f) 10 min

    Fig. A3.  The results of interfacial contact resistivity of Bi0.4Sb1.6Te3/Ni thermoelectric elements after different pickling time: (a) 0 min; (b) 2 min; (c) 4 min; (d) 6 min; (e) 8 min; (f) 10 min.

    图 A4  N-Bi2Te3/Ni热电元件的界面接触电阻率测试结果

    Fig. A4.  The results of interfacial contact resistivity of N-Bi2Te3/Ni thermoelectric element.

    图 1  Bi0.4Sb1.6Te3/Ni热电元件的(a) 界面结合强度和(b) 界面接触电阻率随酸洗时间变化的关系, 其中红色虚线代表现有商业化水平; (c) 器件内阻随酸洗时间的变化关系, 其中右上角为微型热电器件实物照片; (d) 器件的最大制冷温差随酸洗时间的变化关系; 不同酸洗时间制备的器件在10 K温差下的 (e) 开路电压和(f) 输出功率随电流的变化关系

    Fig. 1.  The pickling time dependences of (a) the interfacial bonding strength and (b) the interfacial contact resistivity for Bi0.4Sb1.6Te3/Ni thermoelectric elements, the red dotted line represents the commercial level. (c) The relationship between the internal resistance of the devices and the pickling time, the upper right corner is the photograph of the micro thermoelectric device; (d) the relationship between the maximum cooling temperature difference of the device and pickling time; the current dependences of (e) open-circuit voltage and (f) output power of the devices prepared by different pickling time under 10 K temperature difference.

    图 2  材料表面粗糙度随酸洗时间的变化关系

    Fig. 2.  The relationship between the surface-roughness and pickling time.

    图 3  (a) 不同酸洗时间后的材料表面FESEM图像; (b) 不同酸洗时间后热电元件抛光界面FESEM图像

    Fig. 3.  FESEM images of (a) materials surface and (b) polishing interface of the thermoelectric elements after different pickling time.

    图 4  (a) Bi0.4Sb1.6Te3/Ni热电元件的界面HAADF-STEM图像, 区域1和区域2分别表示界面区域和基体的选区电子衍射; (b) 界面区域的元素面分布图谱, 其中紫色为Ni, 绿色为Te, 红色为Bi和蓝色为Sb; (c)—(f) 区域1的TEM图像, 界面相为Ni3Te2 and NiTe2

    Fig. 4.  (a) HAADF-STEM images of the Ni/Bi0.4Sb1.6Te3 thermoelectric element contact interface, area 1 and 2 represents the selected area electron diffraction of the interface and the matrix, respectively; (b) EDS mapping of (a), purple: Ni, green: Te, red: Bi, blue: Sb; (c)–(f) TEM images of area 1 in Figure (a) and the interface phases are Ni3Te2 and NiTe2 compounds.

    图 5  不同酸洗时间后的材料表面的(a) UPS光谱以及(b) 截止边强度的结合能微分; (c) 材料表面功函数随酸洗时间变化的关系; 酸洗8 min前后的(d) Bi0.4Sb1.6Te3/Ni热电元件的I-V曲线和(e) 能带结构示意图以及(f) 与Ni层界面接触势垒高度的变化示意图

    Fig. 5.  (a) UPS spectra and (b) the binding energy differential of the cut-off edge intensity for the materials surface after different pickling time; (c) I-V curve for the Bi0.4Sb1.6Te3/Ni thermoelectric elements and (d) surface energy band structure diagram and (e) schematic diagram of the height change of the contact barrier at the interface with Ni layer before and after pickling for 8 min.

    表 A1  不同酸洗时间制备出的Bi0.4Sb1.6Te3/Ni热电元件和N-Bi2Te3/Ni热电元件的五次界面结合强度测试结果

    Table A1.  The five repeated results of interfacial bonding strength for Bi0.4Sb1.6Te3/Ni thermoelectric elements with different pickling time and N-Bi2Te3/Ni thermoelectric elements.

    Sample1#2#3#4#5#Average/MPa
    0 min7.256.757.506.937.277.14
    2 min14.0013.7313.2513.7513.5013.65
    4 min16.2514.7514.9515.5015.0015.29
    6 min17.5518.0817.2514.7516.0016.73
    8 min22.0520.7523.7523.2521.9022.34
    10 min13.1314.2812.0013.0313.7513.24
    N-Bi2Te3/Ni14.3313.8516.4014.2816.8015.13
    下载: 导出CSV
    Baidu
  • [1]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [2]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 67 197201Google Scholar

    Tao Y, Qi N, W B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [3]

    Mao J, Chen G, Ren Z 2020 Nat. Mater. 20 454Google Scholar

    [4]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [5]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [6]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdisciplin. Mater. 1 88Google Scholar

    [7]

    Venkatasubramanian R, Watkins C, Stokes D, Posthill J, Caylor C 2007 IEEE International Electron Devices Meeting Washington, USA, December 10–12, 2007, p367

    [8]

    Liu D, Zhao F Y, Yang H X, Tang G F 2015 Energy 83 29Google Scholar

    [9]

    Yan J, Liao X, Yan D, Chen Y 2018 J. Microelectromech. Syst. 27 1Google Scholar

    [10]

    Liu Q L, Li G D, Zhu H T, Zhao H Z 2022 Chin. Phys. B 31 047204Google Scholar

    [11]

    Yu Y, Guo Z, Zhu W, Zhou J, Guo S, Wang Y, Deng Y 2022 Nano Energy 93 106818Google Scholar

    [12]

    Aswal D K, Basu R, Singh A 2016 Energy Convers. Manage. 114 50Google Scholar

    [13]

    Zhang Q H, Huang X Y, Bai S Q, Shi X, Uher C, Chen L D 2016 Adv. Eng. Mater. 18 194Google Scholar

    [14]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [15]

    Liu W, Bai S 2019 J. Materiomics 5 321Google Scholar

    [16]

    胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar

    Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar

    [17]

    Hatzikraniotis E, Zorbas K, Samaras I, Kyratsi T, Paraskevopoulos K 2010 J. Electron. Mater. 39 2112Google Scholar

    [18]

    Park W, Barako M T, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p107

    [19]

    Barako M T, Park W, Marconnet A M, Asheghi M, Goodson K E 13 th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems San Diego, USA, May 30–June 1, 2012, p86

    [20]

    Gupta R, White J, Iyore O, Chakrabarti U, Alshareef H N, Gnade B 2009 Electrochem. Solid-State Lett. 12 H302Google Scholar

    [21]

    Iyore O D, Lee T H, Gupta R P, White J B, Alshareef H N, Kim M J, Gnade B E 2010 Surf. Interface Anal. 41 440Google Scholar

    [22]

    Feng H-P, Yu B, Chen S, Collins K, He C, Ren Z, Chen G 2011 Electrochim. Acta 56 3079Google Scholar

    [23]

    Taylor P J, Maddux J R, Meissner G, Venkatasubramanian R, Bulman G, Pierce J, Gupta R, Bierschenk J, Caylor C, D’Angelo J 2013 Appl. Phys. Lett. 103 043902Google Scholar

    [24]

    Weitzman L H 1967 US Patent 3 338 765

    [25]

    Kozlov A O, Korchagin E P, Mustafoev B R, Babich A V, Rogachev M S 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) St. Petersburg, Moscow, Russia, January 26–29, 2021, p2451

    [26]

    Vikhor L M, Anatychuk L I, Gorskyi P V 2019 J. Appl. Phys. 126 164503Google Scholar

    [27]

    Schottky W 1938 Naturwissenschaften 26 843Google Scholar

    [28]

    Monroy E, Calle F, Ranchal R, Palacios T, Moerman I 2002 Semicond. Sci. Technol. 17 L47Google Scholar

    [29]

    Kim H S, Lee K H, Yoo J, Shin W H, Roh J W, Hwang J Y, Kim S W, Kim S I 2018 J. Alloys Compd. 741 869Google Scholar

    [30]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357Google Scholar

    [31]

    Tang H, Bai H, Yang X, Cao Y, Tang K, Zhang Z, Chen S, Yang D, Su X, Yan Y 2022 J. Alloys Compd. 896 163090Google Scholar

    [32]

    Liu W, Wang H, Wang L, Wang X, Joshi G, Chen G, Ren Z 2013 J. Mater. Chem. A 1 13093Google Scholar

  • [1] 柯少秋, 叶先峰, 张昊俊, 聂晓蕾, 陈天天, 刘承姗, 朱婉婷, 魏平, 赵文俞. 正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜.  , 2024, 73(22): 227301. doi: 10.7498/aps.73.20240701
    [2] 胡雪兰, 孙小清, 王梦媛, 王亚如. Ta和Re对Ni/Ni3Al相界面断裂强度和蠕变强度的影响.  , 2023, 72(6): 063101. doi: 10.7498/aps.72.20222103
    [3] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能.  , 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [4] 聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价.  , 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [5] 陈赟斐, 魏锋, 王赫, 赵未昀, 邓元. 高性能Bi2Te3–xSex热电薄膜的可控生长.  , 2021, 70(20): 207303. doi: 10.7498/aps.70.20211090
    [6] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能.  , 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [7] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究.  , 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [8] 简小刚, 陈军. Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响.  , 2015, 64(21): 216701. doi: 10.7498/aps.64.216701
    [9] 魏政鸿, 云峰, 丁文, 黄亚平, 王宏, 李强, 张烨, 郭茂峰, 刘硕, 吴红斌. 低接触电阻率Ni/Ag/Ti/Au反射镜电极的研究.  , 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [10] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应.  , 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [11] 范平, 蔡兆坤, 郑壮豪, 张东平, 蔡兴民, 陈天宝. Bi-Sb-Te基热电薄膜温差电池离子束溅射制备与表征.  , 2011, 60(9): 098402. doi: 10.7498/aps.60.098402
    [12] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能.  , 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [13] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究.  , 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [14] 穆武第, 程海峰, 陈朝辉, 唐耿平, 吴志桥. 粗糙界面对Bi2Te3/PbTe超晶格热电优值影响的理论分析.  , 2009, 58(2): 1212-1218. doi: 10.7498/aps.58.1212
    [15] 张永康, 孔德军, 冯爱新, 鲁金忠, 张雷洪, 葛 涛. 涂层界面结合强度检测研究(Ⅰ):涂层结合界面应力的理论分析.  , 2006, 55(6): 2897-2900. doi: 10.7498/aps.55.2897
    [16] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究.  , 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [17] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响.  , 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [18] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统.  , 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [19] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [20] 张留碗, 陈廷国. Bi1.6Pb0.4Sr2Ca2Cu3Ox超导体高温电阻率的研究.  , 1998, 47(11): 1906-1911. doi: 10.7498/aps.47.1906
计量
  • 文章访问数:  4413
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 修回日期:  2022-05-04
  • 上网日期:  2022-08-08
  • 刊出日期:  2022-08-20

/

返回文章
返回
Baidu
map