-
Radar Cross Section (RCS), a crucial physical quantity that characterizes the backscattering intensity of targets under radar illumination, is the primary metric for assessing stealth capabilities. With the progression of radar detection technologies, RCS reduction has become a forefront research topic in radar stealth, aiming to minimize target detectability. As radar networking technologies mature, Bistatic Radar RCS reduction is gaining increasing significance over Monostatic Radar RCS reduction in future electromagnetic stealth countermeasures. Artificial electromagnetic metasurface have introduced innovative technical pathways for Bistatic Radar RCS reduction. However, current metasurface designs still face challenges related to inefficiency and suboptimal performance, primarily due to the time-consuming nature of large-scale array optimization and the global extremum characteristics of Bistatic Radar RCS reduction. To overcome these limitations, this study proposes a Few-Shot Convolutional Neural Network (CNN)-based approach, which achieves uniform full-space radar echo scattering by directionally optimizing metasurface phase distributions, thereby enabling effective Bistatic Radar RCS reduction. The approach integrates convolutional feature extraction, residual enhancement, and fully connected optimization modules, alongside a customized loss function, to efficiently capture the complex multidimensional relationships between diffuse reflection phases and the full-space RCS extrema. Theoretical calculations, full-wave simulations, and experimental tests show that the metasurface designed with this approach achieve over 10 dB of Bistatic Radar RCS reduction within the 7.26 GHz to 10.74 GHz frequency range. The method also ensures uniform diffuse reflection across the full space for various incidence angles (30°、 45°、 60°). Compared to traditional optimization algorithms, this method enhances RCS reduction by 17.2% while significantly improving computational efficiency. This approach offers a promising new technical paradigm for achieving full-space electromagnetic stealth in advanced weapon systems.
-
[1] Rao G A, Mahulikar S P 2002 Aeronaut. J. 106629
[2] Ball R E, Albrecht R S, Horne R L 2003 The Fundamentals of Aircraft Combat Survivability: Analysis and Design (2nd ed.) (Reston, VA: AIAA) pp8–56
[3] Westwick P 2019 Stealth:The Secret Contest to Invent Invisible Aircraft (Oxford: Oxford University Press) pp5–42
[4] Singh H, Antony S, Jha R M 2016 Plasma-based radar cross section reduction (Singapore: Springer) pp1–46
[5] Knott E F 2012 Radar Cross Section Measurements (New York: Springer) pp12–36
[6] Knott E F, Schaeffer J R, Tuley M T 2004 Radar Cross Section (2nd ed.) (Reston, VA: SciTech Publishing) pp4–22
[7] Kim S H, Lee S Y, Zhang Y, Park S J, Gu J 2023 Adv. Sci. 102303104
[8] Ananth P B, Abhiram N, Krishna K H, Nisha M S 2021 Mater. Today Proc. 474872
[9] Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z, Ran L 2013 Phys. Rev. Lett 111187402
[10] Wang J, Yang R, Ma R, Tian J, Zhang W 2020 IEEE Access 8105815
[11] Liu Y, Zhao X 2014 IEEE Antennas Wireless Propag. Lett. 131473
[12] Yu N, Genevet P, Kats Ma, Aieta F, Tetienne JP, Capasso F, Gaburro Z 2011 Science 334333
[13] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag 633522
[14] Abdullah M, Koziel S 2022 IEEE Trans. Microw. Theory Techn. 70264
[15] Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P de 2007 IEEE Trans. Antennas Propag 553630
[16] Chen W, Balanis C A, Birtcher C R 2015 IEEE Trans. Antennas Propag 632636
[17] Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antennas Propag 672604
[18] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
[19] Liu X, Gao J, Xu L, Cao X, Zhao Y, Li S 2016 IEEE Antennas Wireless Propag. Lett. 16724
[20] Fu C, Han L, Liu C, Lu X, Sun Z 2021 IEEE Trans. Antennas Propag. 702352
[21] Li W, Huang N, Kang Y, Zou T, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S 2024 IEICE Electron. Express 2120240246
[22] Qi W j, Yu C, Du J l, Zhao Y j 2022 Int. J. RF Microw. Comput. Aided Eng. 3223306
[23] Koziel S, Abdullah M 2020 IEEE Trans. Microw. Theory Techn. 692028
[24] Tao S, Pan X T, Li M K, Xu S H, Yang F 2020 IEEE J. Emerg. Sel. Top. Circuits Syst. 10114
[25] Yang X Y 2023 M.S. Thesis (Nanjing: Southeast University) (in Chinese) [杨欣雨2023硕士学位论文(南京: 东南大学)]
[26] Yuan F, Mao R Q, Gao M, Chen Q, Fu Q Y 2022 Acta Phys. Sin. 71084102(in Chinese) [袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起2022 71084102]
[27] Yuan F, Wang G M, Xu H X, Cai T, Zou X J, Pang Z H 2017 EEE Antennas Wirel. Propag. Lett. 163188
[28] Han X M, Xu H j, Chang Y P, Lin M, Zhang W Y, Xin W 2020 IEEE Access 8162313
[29] Zhou Y, Cao X Y, Gao J, Li S, Liu X 2017 IEEE Access 531381
[30] Katoch S, Chauhan SS, Kumar V 2021 Multimed. Tools Appl. 808091
[31] Wang D S, Tan D P, Liu L 2018 Soft Comput. 22387
[32] Pan X, Xue L, Lu Y, Sun N 2019 Multimed. Tools Appl. 7529921
[33] Dumoulin V, Visin F 2016 Comput. Sci. 0307285
[34] Xu B, Wang N Y, Chen T Q, Li M 2015 arXiv:1505.00853[cs.LG]
[35] Bjorck N, Gomes C P, Selman B, Weinberger K Q 2018 arXiv:1806.02375[cs.LG]
[36] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res. 151929
[37] Dubey S R, Singh S K, Chaudhuri B B 2022 Neurocomputing 50392
[38] Zhou P, Xie X, Lin Z, Yan S 2024 IEEE Trans. Pattern Anal. Mach. Intell. 466486
[39] Shi G, Zhang J, Li H, Wang C 2019 Neural Process. Lett. 5057
[40] Al-Kababji A, Bensaali F, Dakua S P 2022 arXiv:2202.06373[cs.CV]
[41] Yuan F, Xu H X, Jia X Q, Wang G M, Fu Y Q 2020 IEEE Trans. Antennas Propag. 682463
Metrics
- Abstract views: 211
- PDF Downloads: 11
- Cited By: 0