Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling

Shi Wei-Hua You Cheng-Jie Wu Jing

Citation:

D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling

Shi Wei-Hua, You Cheng-Jie, Wu Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The photonic crystal fiber has received the widespread attention in the sensing field because of its flexible structure and unique features. A refractive index and temperature sensor based on the D-shaped photonic crystal fiber is designed and analyzed. In the side section of the D-shaped photonic crystal fiber, a coat with a gold film is used as a surface plasmon resonance (SPR) sensing channel for measuring the refractive index of liquid determinand. Temperature sensitive liquid-toluene is filled in an air hole A as a directional coupling sensing channel to realize the temperature measurement. When the SPR mode and guided mode satisfy the phase matching condition, the SPR effect is produced. Most of the core energy is transferred to the metal film layer in the surface, and then the loss of guided mode in the fiber core will grow. Therefore, the shift of the SPR peak position can be used to measure the refractive index of the determinand indirectly. When the wave mode in the thermosensitive liquid-toluene can achieve phase matching with the guided mode, the directional coupling effect occurs, and then the wavelength of the absorption peak position can be used to measure the change of temperature indirectly. Based on further numerical simulation, the peak position of directional coupling is not changed by the refractive index of the determinand, and the SPR peak position is not shifted by the temperature change either. As these two sensing mechanisms can be distinguished easily, the refractive index and temperature sensing are simultaneously realized. The characteristics of the sensor are simulated numerically by using a full vector finite element method under the boundary condition of anisotropic perfectly matched layer. From the analysis of the D-shaped photonic crystal fiber structure parameters, we find that the diameter d of air hole plays an important role in the directional coupling absorption peak position and temperature sensitivity. For the SPR peak, its position is only affected by the thickness t of gold film, and its relative intensity is changed with the diameter d of air hole and grinding depth d1. The results show that when the temperature ranges from -10 ℃ to 80 ℃, the temperature sensitivity reaches 11.6 nm/℃, and when the refractive index is in a range from 1.32 to 1.44, its sensitivity reaches 26000 nm/RIU.
      Corresponding author: Shi Wei-Hua, njupt_shiwh@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275067).
    [1]

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 Acta Phys. Sin. 60 104221 (in Chinese) [梁瑞冰, 孙琪真, 沃江海, 刘德明 2011 60 104221]

    [2]

    Wang T T, Ge Y X, Chang J H, Ke W, Wang M 2014 Acta Phys. Sin. 63 240701 (in Chinese) [王婷婷, 葛益娴, 常建华, 柯炜 2014 63 240701]

    [3]

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林 2010 59 4732]

    [4]

    Zhao H, Chen M, Li G 2012 Chin. Phys. B 21 068404

    [5]

    Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221

    [6]

    Zhang A P, Shao L Y, Ding J F, Sailing H 2005 IEEE Photon. Technol. Lett. 17 2397

    [7]

    Liao C R, Wang Y, Wang D N, Yang M W 2010 IEEE Photon. Technol. Lett. 22 1686

    [8]

    Hao S, Jing Z, R Q Z, Feng D Y 2013 Sen. J. 13 2039

    [9]

    Yin G, Wang Y, Liao C, Sun B, Liu Y, Liu S, Wang Q, Yang K, Tang J, Zhong X 2015 IEEE Photon. Technol. Lett. 27 375

    [10]

    Chen X L, Luo Y H, Xu M Y, Zhang Y L, He Y H, Tang J Y, Yu J H, Zhang J, Chen Z 2014 Acta Opt. Sin. 34 0206005 (in Chinese) [陈小龙, 罗云瀚, 徐梦云, 张怡龙, 何永红, 唐洁媛, 余健辉, 张军, 陈哲 2014 光学学报 34 0206005]

    [11]

    Shi W H, Wu J 2015 Acta Opt. Sin. 35 0206002 (in Chinese) [施伟华, 吴静 2015 光学学报 35 0206002]

    [12]

    Anna S 2008 J. Appl. Phys. 94 6167

    [13]

    Yu Y Q, Li X J, Hong X M, Deng Y L, Song K Y, Geng Y F, Wei H F, Tong W J 2010 Opt. Express 18 15383

    [14]

    Liu G Q, Ma L X, Liu J 2002 Data Handbook of Material Properties in Chemistry and Chemical Engineering (Vol. Inorganic) (Beijing: Chemical Industry Press) p275 (in Chinese) [刘光启, 马连湘, 刘杰 2002 化学化工物性数据手册(无机卷) (北京: 化学工业出版社) 第275页]

    [15]

    Liu G Q, Ma L X, Liu J 2002 Data Handbook of Material Properties in Chemistry and Chemical Engineering (Vol. Organic) (Beijing: Chemical Industry Press) p283 (in Chinese) [刘光启, 马连湘, 刘杰 2002 化学化工物性数据手册(有机卷) (北京: 化学工业出版社) 第283页]

  • [1]

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 Acta Phys. Sin. 60 104221 (in Chinese) [梁瑞冰, 孙琪真, 沃江海, 刘德明 2011 60 104221]

    [2]

    Wang T T, Ge Y X, Chang J H, Ke W, Wang M 2014 Acta Phys. Sin. 63 240701 (in Chinese) [王婷婷, 葛益娴, 常建华, 柯炜 2014 63 240701]

    [3]

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林 2010 59 4732]

    [4]

    Zhao H, Chen M, Li G 2012 Chin. Phys. B 21 068404

    [5]

    Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221

    [6]

    Zhang A P, Shao L Y, Ding J F, Sailing H 2005 IEEE Photon. Technol. Lett. 17 2397

    [7]

    Liao C R, Wang Y, Wang D N, Yang M W 2010 IEEE Photon. Technol. Lett. 22 1686

    [8]

    Hao S, Jing Z, R Q Z, Feng D Y 2013 Sen. J. 13 2039

    [9]

    Yin G, Wang Y, Liao C, Sun B, Liu Y, Liu S, Wang Q, Yang K, Tang J, Zhong X 2015 IEEE Photon. Technol. Lett. 27 375

    [10]

    Chen X L, Luo Y H, Xu M Y, Zhang Y L, He Y H, Tang J Y, Yu J H, Zhang J, Chen Z 2014 Acta Opt. Sin. 34 0206005 (in Chinese) [陈小龙, 罗云瀚, 徐梦云, 张怡龙, 何永红, 唐洁媛, 余健辉, 张军, 陈哲 2014 光学学报 34 0206005]

    [11]

    Shi W H, Wu J 2015 Acta Opt. Sin. 35 0206002 (in Chinese) [施伟华, 吴静 2015 光学学报 35 0206002]

    [12]

    Anna S 2008 J. Appl. Phys. 94 6167

    [13]

    Yu Y Q, Li X J, Hong X M, Deng Y L, Song K Y, Geng Y F, Wei H F, Tong W J 2010 Opt. Express 18 15383

    [14]

    Liu G Q, Ma L X, Liu J 2002 Data Handbook of Material Properties in Chemistry and Chemical Engineering (Vol. Inorganic) (Beijing: Chemical Industry Press) p275 (in Chinese) [刘光启, 马连湘, 刘杰 2002 化学化工物性数据手册(无机卷) (北京: 化学工业出版社) 第275页]

    [15]

    Liu G Q, Ma L X, Liu J 2002 Data Handbook of Material Properties in Chemistry and Chemical Engineering (Vol. Organic) (Beijing: Chemical Industry Press) p283 (in Chinese) [刘光启, 马连湘, 刘杰 2002 化学化工物性数据手册(有机卷) (北京: 化学工业出版社) 第283页]

  • [1] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1×2 directional coupler demultiplexer based on sandwiched structure. Acta Physica Sinica, 2021, 70(1): 014202. doi: 10.7498/aps.70.20200721
    [3] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [4] Xiao Shi-Yan, Jia Da-Gong, Nie An-Ran, Yu Hui, Ji Zhe, Zhang Hong-Xia, Liu Tie-Gen. Multi-channel few-mode multicore fiber based surface plasmon resonance biosensor with open air-hole. Acta Physica Sinica, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [5] Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan. Design and coupling characteristics of terahertz dual-core anti-resonant fiber. Acta Physica Sinica, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [6] Wu Qian, Zhang Zhu-Yu, Guo Xiao-Chen, Shi Wei-Hua. Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber with eliminating cross-sensitivity. Acta Physica Sinica, 2018, 67(18): 184212. doi: 10.7498/aps.67.20180680
    [7] Sun Xiao-Liang, Chen Chang-Hong, Meng De-Jia, Feng Shi-Gao, Yu Hong-Hao. Split modes of composite metal grating and its application for high performance gas sensor. Acta Physica Sinica, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [8] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [9] Jing Qing-Li, Du Chun-Guang, Gao Jian-Cun. New application of surface plasmon resonance-measurement of weak magnetic field. Acta Physica Sinica, 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [10] Zhang Zhe, Liu Qian, Qi Zhi-Mei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [11] Feng Li-Hang, Zeng Jie, Liang Da-Kai, Zhang Wei-Gong. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe. Acta Physica Sinica, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] Zou Zhi-Yu, Liu Xiao-Fang, Zeng Min, Yang Bai, Yu Rong-Hai, Jiang He, Tang Rui-He, Wu Zhang-Ben. Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method. Acta Physica Sinica, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [13] Yan Hong-Dan, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. High-density array of Au nanowires coupled by plasmon modes. Acta Physica Sinica, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [14] Zhong Ming-Liang, Li Shan, Xiong Zu-Hong, Zhang Zhong-Yue. Plasmonic properties of silver cross-shape nanostructure. Acta Physica Sinica, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [15] Qiu Dong-Jiang, Fan Wen-Zhi, Weng Sheng, Wu Hui-Zhen, Wang Jun. Surface-plasmon-mediated emission enhancement from Ag-capped ZnO thin films. Acta Physica Sinica, 2011, 60(8): 087301. doi: 10.7498/aps.60.087301
    [16] Hao Peng, Wu Yi-Hui, Zhang Ping. Study of interaction of surface plasmon resonance sensor with nano-gold. Acta Physica Sinica, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [17] Long Yong-Bing, Zhang Jian, Wang Guo-Ping. Femtosecond pump-probe technique assisted by surface plasmon resonance. Acta Physica Sinica, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [18] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Gu Yu-Zong, Guo Li-Jun, Qian Shi-Xiong. The optical and nonlinear optical properties of Au:TiO2 and Au:Al2O3 composite films. Acta Physica Sinica, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [19] Hong Xiao-Gang, Xu Wen-Dong, Li Xiao-Gang, Zhao Cheng-Qiang, Tang Xiao-Dong. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography. Acta Physica Sinica, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [20] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Guo Li-Jun, Qian Shi-Xiong. Linear and nonlinear optical properties of Ag:Bi2O3 composite films. Acta Physica Sinica, 2007, 56(7): 4024-4031. doi: 10.7498/aps.56.4024
Metrics
  • Abstract views:  7464
  • PDF Downloads:  529
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2015
  • Accepted Date:  13 July 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map