Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An ultra-narrow-band optical filter based on zero refractive index metamaterial

Zhou Xiao-Xia Chen Ying Cai Li

Citation:

An ultra-narrow-band optical filter based on zero refractive index metamaterial

Zhou Xiao-Xia, Chen Ying, Cai Li
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Owing to the photonic band gap effect and defect state effect, photonic metamaterials have received much attention in the design of narrow bandpass filters, which are the key devices of optical communication equipment such as wavelength division multiplexing devices. In this work, based on zero-index metamaterial (ZIM), a compact filter with both high peak transmission coefficient and ultra-narrow bandwidth is proposed. The photonic metamaterial with conical dispersion and Dirac-like point is achieved by optimizing the structure and material component parameters of dielectric rods with square lattice in air. It is demonstrated that a triply degenerate state can be realized at the Dirac-like point, which relates this metamaterial to a zero-index medium with effective permittivity and permeability equal to zero simultaneously. Electromagnetic (EM) wave can propagate without any phase delay at this frequency, and strong dispersion occurs in the adjacent frequency cone, leading to dramatic changes in optical properties. We introduce a ZIM into photonic metamaterial defect filter to compress the bandwidth to the realization of ultra-narrow bandpass filter. The ZIM is embedded into the resonant cavity of line defect filter, which is also composed of dielectric rods with square lattice in air. In order to increase the sensitivity of the phase change with frequency, the Dirac-like frequency is adjusted to match the resonant frequency of the filter. We study the transmission spectrum of the structure through the COMSOL Multiphysics simulation software, and find that the peak width at half-maximum of the filter decreases as the thickness of ZIM increases, and the peak transmittance is still high when bandwidth is greatly compressed. The zero phase delay inside the slab can be observed. Through field distribution analysis, the zero-phase delay and strong coupling characteristics of electromagnetic field are observed at peak frequency. The comparison with conventional photonic metamaterials filter is discussed. We believe that this work is helpful in investigating the realization of ultra-narrow bandpass filters.
      Corresponding author: Cai Li, cailiyunnan@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51975575).
    [1]

    陈鹤鸣, 孟晴 2011 60 014202Google Scholar

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202Google Scholar

    [2]

    Mao J D, Li J, Zhou C Y, Zhao H, Sheng H J 2013 Laser Phys. 23 026003Google Scholar

    [3]

    Meng X J, Li J S, Guo Y, Du H J, Liu Y D, Li S G, Guo H T, Bi W H 2021 J. Opt. Soc. Am. B. 38 1525Google Scholar

    [4]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [5]

    Wang F, Cheng Y Z, Wang X, Qi D, Luo H, Gong R Z 2018 Opt. Mater. 75 373Google Scholar

    [6]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [7]

    Fan S H, Villeneuve P R, Joannopoulos J D, Haus H A 1998 Opt. Express 3 4Google Scholar

    [8]

    罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 72 044101Google Scholar

    Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin. 72 044101Google Scholar

    [9]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Elect. Eng. 20 591Google Scholar

    [10]

    杨春云, 徐旭明, 叶涛, 缪路平 2011 60 017807Google Scholar

    Yang C Y, Xu X M, Ye T, Miu L P 2011 Acta Phys. Sin. 60 017807Google Scholar

    [11]

    陈颖, 王文跃, 于娜 2014 63 034205Google Scholar

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205Google Scholar

    [12]

    余建立, 沈宏君, 叶松, 洪求三 2012 光学学报 32 1106003Google Scholar

    Yu J L, Shen H J, Ye S, Hong Q S 2012 Acta Opt. Sin. 32 1106003Google Scholar

    [13]

    Dai Z X, Wang J L, Heng Y 2011 Opt. Express 19 3667Google Scholar

    [14]

    Chen C, Li X C, Li H H, Xu K, Wu J, Lin J T 2007 Opt. Express 15 11278Google Scholar

    [15]

    庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 64 224202Google Scholar

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202Google Scholar

    [16]

    Edwards B, Alù A, Young M, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903Google Scholar

    [17]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582Google Scholar

    [18]

    Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903Google Scholar

    [19]

    Vulis D I, Reshef O, Camayd-Munoz P, Mazur E 2019 Rep. Prog. Phys. 82 012001Google Scholar

    [20]

    Li Y, Chan C T, Mazur E 2021 Light-Sci. Appl. 10 203Google Scholar

    [21]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [22]

    Silveirinha M G, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar

    [23]

    Silveirinha M G, Engheta N 2007 Phys. Rev. B 76 245109Google Scholar

    [24]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [25]

    Ma Y G, Wang P, Chen X, Ong C K 2009 Appl. Phys. Lett. 94 044107Google Scholar

    [26]

    Edwards B, Alù, Silveirinha M G, Engheta N 2009 J. Appl. Phys. 105 044905Google Scholar

    [27]

    Luo J, Xu P, Chen H Y, Hou B, Gao L, Lai Y 2012 Appl. Phys. Lett. 100 221903Google Scholar

    [28]

    Alù A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410Google Scholar

    [29]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908Google Scholar

    [30]

    Xu J M, Chen L, Zang X F, Cai B, Peng Y, Zhu Y M 2013 Appl. Phys. Lett. 103 161116Google Scholar

    [31]

    Chan C T, Huang X, Liu F, Hang Z H 2012 PIER B 44 163Google Scholar

    [32]

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 0184208 (in Chinese) [黄学勤, 陈子亭 2015 64 184208Google Scholar

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 0184208 (in Chinese) Google Scholar

    [33]

    Wang L G, Wang Z G, Zhang J X, Zhu S Y 2009 Opt. Lett. 34 1510Google Scholar

    [34]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111Google Scholar

    [35]

    Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101Google Scholar

    [36]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

  • 图 1  滤波器结构示意图 (a)线缺陷滤波器; (b)线缺陷+零折射超构材料滤波器

    Figure 1.  Schematic diagram of the filter: (a) Structure of the filter with line defect; (b) structure of the filter with line defect and zero index metamaterial.

    图 2  (a)零折射超构材料的光子能带结构; (b), (c)含零折射超构材料滤波器的传输特性

    Figure 2.  (a)The band structure of a metamaterial with zero refractive index; (b), (c) transmission characteristics of filter with zero index metamaterials.

    图 3  (a)传输谱和(b)缺陷间隙L1随零折射超构材料厚度的变化

    Figure 3.  The variations of (a) the transmission spectrum and (b) the width of the defect with the thickness of the zero index metamaterials.

    图 4  (a), (b)类狄拉克点频率处滤波器中的波场分布; (c)类狄拉克点附近ZIM的等效参数; (d), (e)滤波器非零折射率透射峰O2, O3的波场分布

    Figure 4.  (a), (b) The field distribution in the filter near the Dirac-like point; (c) the effective permittivity and permeability of the ZIM as a function of frequency near the Dirac-like point; (d), (e) the field distribution in the filter at transmission peak O2 and O3 with nonzero refractive index.

    图 5  (a)不含ZIM滤波器的传输谱随超构材料厚度的变化; (b)含ZIM滤波器的传输谱随ZIM厚度的变化

    Figure 5.  The variations of the transmission spectrum (a) with the thickness of PMs1 for the filter without ZIM and (b) with the thickness of ZIM for the filter with ZIM.

    图 6  (a)有限厚度的线缺陷+零折射超构材料滤波器示意图; (b)考虑PMs1中介质柱损耗的滤波器传输谱; (c)考虑ZIM中材料损耗的滤波器传输谱

    Figure 6.  (a) Schematic diagram of the finite thickness filter with line defect and zero index metamaterial; (b), (c) transmission spectrum considering different material losses of dielectric columns in defects and in ZIM.

    Baidu
  • [1]

    陈鹤鸣, 孟晴 2011 60 014202Google Scholar

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202Google Scholar

    [2]

    Mao J D, Li J, Zhou C Y, Zhao H, Sheng H J 2013 Laser Phys. 23 026003Google Scholar

    [3]

    Meng X J, Li J S, Guo Y, Du H J, Liu Y D, Li S G, Guo H T, Bi W H 2021 J. Opt. Soc. Am. B. 38 1525Google Scholar

    [4]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [5]

    Wang F, Cheng Y Z, Wang X, Qi D, Luo H, Gong R Z 2018 Opt. Mater. 75 373Google Scholar

    [6]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [7]

    Fan S H, Villeneuve P R, Joannopoulos J D, Haus H A 1998 Opt. Express 3 4Google Scholar

    [8]

    罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 72 044101Google Scholar

    Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin. 72 044101Google Scholar

    [9]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Elect. Eng. 20 591Google Scholar

    [10]

    杨春云, 徐旭明, 叶涛, 缪路平 2011 60 017807Google Scholar

    Yang C Y, Xu X M, Ye T, Miu L P 2011 Acta Phys. Sin. 60 017807Google Scholar

    [11]

    陈颖, 王文跃, 于娜 2014 63 034205Google Scholar

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205Google Scholar

    [12]

    余建立, 沈宏君, 叶松, 洪求三 2012 光学学报 32 1106003Google Scholar

    Yu J L, Shen H J, Ye S, Hong Q S 2012 Acta Opt. Sin. 32 1106003Google Scholar

    [13]

    Dai Z X, Wang J L, Heng Y 2011 Opt. Express 19 3667Google Scholar

    [14]

    Chen C, Li X C, Li H H, Xu K, Wu J, Lin J T 2007 Opt. Express 15 11278Google Scholar

    [15]

    庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 64 224202Google Scholar

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202Google Scholar

    [16]

    Edwards B, Alù A, Young M, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903Google Scholar

    [17]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582Google Scholar

    [18]

    Cheng Q, Jiang W X, Cui T J 2012 Phys. Rev. Lett. 108 213903Google Scholar

    [19]

    Vulis D I, Reshef O, Camayd-Munoz P, Mazur E 2019 Rep. Prog. Phys. 82 012001Google Scholar

    [20]

    Li Y, Chan C T, Mazur E 2021 Light-Sci. Appl. 10 203Google Scholar

    [21]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [22]

    Silveirinha M G, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar

    [23]

    Silveirinha M G, Engheta N 2007 Phys. Rev. B 76 245109Google Scholar

    [24]

    Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P 2002 Phys. Rev. Lett. 89 213902Google Scholar

    [25]

    Ma Y G, Wang P, Chen X, Ong C K 2009 Appl. Phys. Lett. 94 044107Google Scholar

    [26]

    Edwards B, Alù, Silveirinha M G, Engheta N 2009 J. Appl. Phys. 105 044905Google Scholar

    [27]

    Luo J, Xu P, Chen H Y, Hou B, Gao L, Lai Y 2012 Appl. Phys. Lett. 100 221903Google Scholar

    [28]

    Alù A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410Google Scholar

    [29]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908Google Scholar

    [30]

    Xu J M, Chen L, Zang X F, Cai B, Peng Y, Zhu Y M 2013 Appl. Phys. Lett. 103 161116Google Scholar

    [31]

    Chan C T, Huang X, Liu F, Hang Z H 2012 PIER B 44 163Google Scholar

    [32]

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 0184208 (in Chinese) [黄学勤, 陈子亭 2015 64 184208Google Scholar

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 0184208 (in Chinese) Google Scholar

    [33]

    Wang L G, Wang Z G, Zhang J X, Zhu S Y 2009 Opt. Lett. 34 1510Google Scholar

    [34]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111Google Scholar

    [35]

    Jin J F, Liu S Y, Lin Z F, Chui S T 2011 Phys. Rev. B 84 115101Google Scholar

    [36]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

Metrics
  • Abstract views:  3334
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2023
  • Accepted Date:  21 June 2023
  • Available Online:  06 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回
Baidu
map