Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transient liquid phase-assisted fluorine-free chemical fabrication of YBa2Cu3O7–δ and complete [Ba-Cu-O]L liquid phase films: Phase transformations during intermediate-high temperature heat treatment

TAO Jiaqi LIU Zhiyong ZHOU Xinghang FU Yixue LI Minjuan CAI Chuanbing

Citation:

Transient liquid phase-assisted fluorine-free chemical fabrication of YBa2Cu3O7–δ and complete [Ba-Cu-O]L liquid phase films: Phase transformations during intermediate-high temperature heat treatment

TAO Jiaqi, LIU Zhiyong, ZHOU Xinghang, FU Yixue, LI Minjuan, CAI Chuanbing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The epitaxial orientation of YBa2Cu3O7–δ grown via the oxygen partial pressure jump pathway in transient liquid-phase assisted chemical solution deposition (TLAG-CSD) depends on the barium-to-copper ratio in the precursor phase. To explore the mechanism behind this phenomenon, in this work we investigate the effects of different oxygen partial pressures and barium-to-copper ratio components on the barium-copper-oxygen liquid phase ([Ba-Cu-O]L) and the intermediate phase transition in the medium-high temperature heat treatment process. The research shows that the formation of the liquid phase exhibits a point-to-surface characteristic; the temperature and morphological differences in the liquid phase are mainly determined by the composition, with oxygen partial pressure only playing a supporting role. Y∶Ba∶Cu = 0∶3∶7 (0-3-7) components all appear before Y∶Ba∶Cu = 0∶2∶3 (0-2-3) components in the liquid phase, with a temperature difference of 20 ℃ (high oxygen partial pressure) or 40 ℃ (low oxygen partial pressure). Experimental results indicate that there are differences in the intermediate phase properties between these two components. Under high oxygen partial pressure, the intermediate phase BaCuO2 exhibits a single characteristic peak in the 0-3-7 component, with large and dispersed grains; the 0-2-3 component has multiple characteristic peaks, with small and dense grains. The surface area of the liquid phase region in the 0-3-7 component is smaller than that in the 0-2-3 component, resulting in different supersaturation levels of Y3+ in the liquid phases of the two components and causing orientation differences in YBCO. Finally, the basic model for the formation of fluorine-free liquid phase is summarized, and the complete [Ba-Cu-O]L film can be generated from the 0-2-3 component at high oxygen partial pressure and 750 ℃.
  • 图 1  TLAG-CSD的两种路线对应的晶化反应示意图

    Figure 1.  Schematic diagram of the crystallization reactions corresponding to the two routes of TLAG-CSD.

    图 2  [Ba-Cu-O]L薄膜的热处理过程示意图

    Figure 2.  Schematic diagram of heat treatment process of [Ba-Cu-O]L thin film.

    图 3  Y∶Ba∶Cu = 1.5∶3∶7和Y∶Ba∶Cu = 1∶2∶3两组分薄膜在相同生长条件下YBCO的外延取向差异, 初始氧分压都为10 ppm

    Figure 3.  Different epitaxial orientation of YBCO in Y∶Ba∶Cu = 1.5∶3∶7 and Y∶Ba∶Cu = 1∶2∶3 films grown under the same conditions, the initial oxygen partial pressures are all 10 ppm.

    图 4  $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分的液相在中高温热处理过程中的演变, 其中蓝虚线圈为液相痕迹, 红椭圆-蜂窝状为熔融凝固态, 红圆角矩形为大液相区, 橙圆角矩形为液相之间的空隙, 橙虚线标识液相间的分界线, 黄虚线圈为点状液相区

    Figure 4.  $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, the evolution of the liquid phase of Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 during medium and high temperature heat treatment, where blue dotted circle represents liquid phase trace; red ellipse represents honeycomb molten solid state; red rounded rectangle represents large liquid phase area; orange rounded rectangle represents gap between liquid phases, orange dotted line marks the boundary between liquid phases; yellow dotted circle represents pointed liquid phase area.

    图 5  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分的液相在中高温热处理过程中的演变, 其中红虚线圈为液相间的空隙, 蓝虚线框为液相层的阶梯状分布

    Figure 5.  Evolution of the liquid phase of two components of $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 during medium and high temperature heat treatment, where red dotted circle-the gap between the liquid phases, blue dotted frame-the stepped distribution of the liquid phase layer.

    图 6  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, 640 ℃下Y∶Ba∶Cu = 0∶3∶7组分薄膜表面的EDS元素点扫描, 显示黑色斑块区域富铜元素

    Figure 6.  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, EDS element point scanning of the surface of the Y∶Ba∶Cu = 0∶3∶7 component film at 640 ℃ shows that the black patch area is rich in copper elements.

    图 7  示意不同组分液相形成时期的大小与分布等性状差异

    Figure 7.  Indicate the differences in characteristics such as size and distribution during the formation of liquid phases of different components.

    图 8  $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜中高温热处理过程的物相演变, 不同温度是指淬火温度, 由于该实验氧分压属于高氧分压[28](CuO不会被还原), 因此淬火在室温中进行

    Figure 8.  Phase evolution during high temperature heat treatment of two-component films with $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3, the different temperatures refer to the quenching temperatures, the quenching was performed at room temperature because the oxygen partial pressure in this experiment was high[28] (CuO would not be reduced).

    图 9  (a), (b) $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, 660 ℃下Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜表面SEM图以及对应的EDS元素扫描和Ba元素的表面分布图, (c), (d) Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜的AFM扫描图像

    Figure 9.  (a), (b) $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm: SEM images of the surface of the two-component films Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 at 660 ℃, and the corresponding EDS element scans and surface distribution of Ba elements; (c), (d) AFM scan images of the corresponding two-component films.

    图 10  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜中高温热处理过程的物相演变, 不同温度是指淬火温度, 由于该实验氧分压属于低氧分压[28](CuO会被还原), 因此淬火是在液氮中进行

    Figure 10.  Phase evolution during high temperature heat treatment of two-component films with $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3, the different temperatures refer to the quenching temperatures, the quenching was performed in liquid nitrogen because the oxygen partial pressure in this experiment was low[28] (CuO would be reduced).

    图 11  (a)—(c)不同氧分压下, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分的BaCO3和BaCuO2特征峰面积随温度的变化, 紫虚线表示两曲线的下降斜率一致, 罗马数字表示不同的温区; (d) Ton是BaCO3的分解温度, TL是形成完全液相的温度

    Figure 11.  (a)–(c) Characteristic peak areas of BaCO3 and BaCuO2 of Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 under different oxygen partial pressures vary with temperature, the purple dashed line indicates that the two curves have the same downward slope, and the Roman numerals represent different temperature zones; (d) Ton is the decomposition temperature of BaCO3, and TL is the temperature at which a complete liquid phase is formed.

    图 12  (a), (b) Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3组分的前驱相颗粒均匀分布示意图; (c), (d) 高、低氧分压下完全[Ba-Cu-O]L膜的形成示意图

    Figure 12.  (a), (b) Schematic diagrams of uniform distribution of precursor phase particles of Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 components, respectively; (c), (d) schematic diagrams of the formation of complete [Ba-Cu-O]L film under high and low oxygen partial pressures, respectively.

    Baidu
  • [1]

    Zhou Y H, Park D, Iwasa Y 2023 Natl. Sci. Rev. 10 nwad001Google Scholar

    [2]

    Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [3]

    Barth C, Komorowski P, Vonlanthen P, Herzog R, Tediosi R, Alessandrini M, Bonura M, Senatore C 2019 Supercond. Sci. Technol. 32 075005Google Scholar

    [4]

    Chow C C T, Ainslie M D, Chau K T 2023 Energy Rep. 9 1124Google Scholar

    [5]

    Favre S, Ariosa D, Yelpo C, Mazini M, Faccio R 2021 Mater. Chem. Phys. 266 124507Google Scholar

    [6]

    Khan M Z, Rivasto E, Tikkanen J, Rijckaert H, Malmivirta M, Liedke M O, Butterling M, Wagner A, Huhtinen H, Van Driessche I, Paturi P 2019 Sci. Rep. 9 15425Google Scholar

    [7]

    Yang T W, Wang L M 2023 IEEE Trans. Appl. Supercond. 33 1

    [8]

    Chen X, Tao B, Zhao R, Yang K, Li Z, Xie T, Zhong Y, Zhang T, Xia Y 2023 Mater. Lett. 330 133336Google Scholar

    [9]

    Chen T Y, Xia Y D, Zhao R P, Wu D, Feng Z P, Yang J T, Xin J J, Wang W, Jin K, Tao B W 2022 Ceram. Int. 48 17837Google Scholar

    [10]

    Zhao P, Wang Y, Huang Z L, Mao Y, Xu Y L 2015 J. Cryst. Growth 415 152Google Scholar

    [11]

    Jin L H, Bai Y, Li C S, Feng J Q, Lei L, Zhao G Y, Gao L, Zhang P X 2019 Mater. Lett. 250 34Google Scholar

    [12]

    Wesolowski D E, Patta Y R, Cima M J 2009 Phys. C Supercond. 469 766Google Scholar

    [13]

    Bhuiyan M S, Paranthaman M, Salama K 2006 Supercond. Sci. Technol. 19 R1Google Scholar

    [14]

    Chu J Y, Zhao Y, Khan M Z, Tang X, Wu W, Shi J T, Wu Y, Huhtinen H, Suo H L, Jin Z J 2019 Cryst. Growth Des. 19 6752Google Scholar

    [15]

    Soler L, Jareño J, Banchewski J, Rasi S, Chamorro N, Guzman R, Yáñez R, Mocuta C, Ricart S, Farjas J, Roura-Grabulosa P, Obradors X, Puig T 2020 Nat. Commun. 11 344Google Scholar

    [16]

    Shi J T, Zhao Y, Jiang G Y, Zhu J M, Wu Y, Gao Y S, Quan X L, Yu X, Wu W, Jin Z J 2021 J. Eur. Ceram. Soc. 41 5223Google Scholar

    [17]

    Chu J Y, Zhao Y, Ji Y T, Wu W, Shi J T, Hong Z Y, Ma L, Suo H L, Jin Z J 2019 J. Am. Ceram. Soc. 102 5705Google Scholar

    [18]

    Chu N, Liu Z Y, Yang Z, Tong S, Shen J, Chen J, Cai C B 2022 Jpn. J. Appl. Phys. 61 075509Google Scholar

    [19]

    Shen J J, Liu Z Y, Chen J, Zhou X H, Li Y G, Cai C B 2022 J. Supercond. Nov. Magn. 35 3147Google Scholar

    [20]

    Saltarelli L, Gupta K, Rasi S, Kethamkuzhi A, Queraltó A, Garcia D, Gutierrez J, Farjas J, Roura-Grabulosa P, Ricart S, Obradors X, Puig T 2022 ACS Appl. Mater. Interfaces 14 48582Google Scholar

    [21]

    Rasi S, Queraltó A, Banchewski J, Saltarelli L, Garcia D, Pacheco A, Gupta K, Kethamkuzhi A, Soler L, Jareño J, Ricart S, Farjas J, Roura‐Grabulosa P, Mocuta C, Obradors X, Puig T 2022 Adv. Sci. 9 2203834Google Scholar

    [22]

    Vermeir P, Cardinael I, Schaubroeck J, Verbeken K, Bäcker M, Lommens P, Knaepen W, D’haen J, De Buysser K, Van Driessche I 2010 Inorg. Chem. 49 4471Google Scholar

    [23]

    Rasi S, Soler L, Jareño J, Banchewski J, Guzman R, Mocuta C, Kreuzer M, Ricart S, Roura-Grabulosa P, Farjas J, Obradors X, Puig T 2020 J. Phys. Chem. C 124 15574Google Scholar

    [24]

    Zhou X H, Chen J, Huang R T, Liu Z Y, Cai C B 2024 Colloids Surf. Physicochem. Eng. Asp. 691 133830Google Scholar

    [25]

    Lee J H, Lee H, Lee J W, Choi S M, Yoo S I, Moon S H 2014 Supercond. Sci. Technol. 27 044018Google Scholar

    [26]

    Song X, Daniels G, Feldmann D M, Gurevich A, Larbalestier D 2005 Nat. Mater. 4 470Google Scholar

    [27]

    Heinig N F, Redwing R D, Tsu I F, Gurevich A, Nordman J E, Babcock S E, Larbalestier D C 1996 Appl. Phys. Lett. 69 577Google Scholar

    [28]

    Soler L B 2019 PhD Dissertation (Institut de Ciències de Materials de Barcelona - CSIC

    [29]

    Shiohara Y, Goodilin E A 2000 Handbook on the Physics and Chemistry of Rare Earths 2000 pp67–227

    [30]

    Zhou X H, Chen J, Huang R T, Tao J Q, Fu Y X, Li M J, Liu Z Y, Cai C B 2024 Colloids Surf. Physicochem. Eng. Asp. 702 135106Google Scholar

    [31]

    Chu P Y, Buchanan R C 1993 J. Mater. Res. 8 2134Google Scholar

    [32]

    Nevřiva M, Pollert E, Matějková L, Tříska A 1988 J. Cryst. Growth 91 434Google Scholar

    [33]

    Zhang W, Osamura K, Ochiai S 1990 J. Am. Ceram. Soc. 73 1958Google Scholar

  • [1] Yi Qi-Ru, Xiong Pei-Yu, Wang Huan-Hua, Li Gang, Wang Yun-Kai, Dong En-Yang, Chen Yu, Shen Zhi-Bang, Wu Yun, Yuan Jie, Jin Kui, Gao Chen. Microstructure study of YBa2Cu3O7-δ thin film with synchrotron-based three-dimensional reciprocal space mapping. Acta Physica Sinica, doi: 10.7498/aps.72.20221776
    [2] Wang Hong-Zhang, Li Yu-Long, Xu Tie-Quan, Zhu Zi-Qing, Ma Ping, Wang Yue, Gan Zi-Zhao. Fabrication and characterization of YBa2Cu3O7–$_{ \delta}$ step-edge Josephson junctions on MgO substrate for high-temperature superconducting quantum interference devices. Acta Physica Sinica, doi: 10.7498/aps.70.20201291
    [3] Li Mei-Ya, Wang Jing, Liu Jun, Yu Ben-Fang, Guo Dong-Yun, Zhao Xing-Zhong. Dependence of growth and property of YBa2Cu3O7-x coated conductors on the thickness of CeO2 buffer layer. Acta Physica Sinica, doi: 10.7498/aps.57.3132
    [4] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, doi: 10.7498/aps.57.4371
    [5] WANG ZHI-HE, CAO XIAO-WEN, FANG JUN, CHEN ZHI-YOU, LI KE-BIN. RELATION BETWEEN IRREVERSIBILITY LINE AND VORTEX-GLASS LINE IN EPITAXIAL YBa2Cu3O7-δ THIN FILMS. Acta Physica Sinica, doi: 10.7498/aps.48.154
    [6] XU KE-XI, ZHOU SHI-PING, BAO JIA-SHAN. NONLINEAR OPTICAL RESPONSE OF EPITAXIAL YBa2Cu3O7-δ FILMS. Acta Physica Sinica, doi: 10.7498/aps.47.307
    [7] WANG ZHI-HE, CAO XIAO-WEN, CHEN JING-LIN, LI KE-BIN. EFFECTIVE PINNING POTENTIAL IN EPITAXIAL YBa2Cu3O7-δ THIN FILM. Acta Physica Sinica, doi: 10.7498/aps.47.1720
    [8] ZHAO YONG, ZHUGE XIANG-BIN, HE YE-YE. CHARACTERISTICS OF TEMPERATURE DEPENDENCE OF CRITICAL CURRENT IN TYPICAL GRANULAR SYSTEM YBa2Cu3O7/V2O5. Acta Physica Sinica, doi: 10.7498/aps.43.1693
    [9] JIN XIN, ZHANG YI-TONG, LU RUI-XI, YAO XI-XIAN, LIU FENG-SHENG, MOU HUI-LIN, WU XIAO-ZU, ZHOU LIAN. CORRELATION BETWEEN THE IRREVERSIBILITY LINE AND PINNING POTENTIAL IN HIGH-Tc SUPERCONDUCTOR YBa2Cu3O7-δ. Acta Physica Sinica, doi: 10.7498/aps.41.123
    [10] XIE XIAO-MING, CHEN TING-GUO. ON THE ORDER OF THE ORTHORHOMBIC-TETRAGONAL PHASE TRANSITION IN YBa2Cu3O7-δ. Acta Physica Sinica, doi: 10.7498/aps.41.1830
    [11] YANG YONG-HONG, XING DING-YU, GONG CHANG-DE. METAL-INSULATOR TRANSITION IN YBa2Cu3O7-x. Acta Physica Sinica, doi: 10.7498/aps.41.136
    [12] YU ZHENG, DING SHI-YING, YAN JIA-LIE, REN HONG-TAO. MEASUREMENT OF c-AXIS CRITICAL CURRENT DENSITY FOR YBa2Cu3O7-x. Acta Physica Sinica, doi: 10.7498/aps.40.634
    [13] Wang Nan-lin, Tan Ming-qiu, Zhao Zhan-chun, Wang Jing-song, Sha Jian, Liu Xian-ming, Ji Ming-rong, Zhang Qi-rui. X-RAY PHOTOELECTRON SPECTROSCOPY STUDY ON THE HOLE STATES IN YBa2Cu3O7 SUPERCONDUCTOR. Acta Physica Sinica, doi: 10.7498/aps.40.821
    [14] WANG CHENG-ZHANG, WANG HUAI-YU, ZHANG LI-YUAN. CHANGE OF ELECTRONIC STRUCTURES CAUSED BY LOCAL SUBSTITUTION OF Zn FOR Cu IN YBa2Cu3O7 MATERIAL. Acta Physica Sinica, doi: 10.7498/aps.40.1862
    [15] GAO ZHI-SHUANG, HOU ZHI-JIAN, DU BAO-SHI, WANG CHEN-XU, ZHU CHANG-YU, LI YUN-JUN, LIU FU-SUI. RESEARCH ON THE CONDUCTION BEHAVIOR OF YBa2Cu3O7-x AT HIGH TEMPERATURE. Acta Physica Sinica, doi: 10.7498/aps.39.138
    [16] RUAN YAO-ZHONG, HU XUE-LONG, LI LI-PING, MENG GUANG-YAO, HU JUN-BAO, JIANG ZHI-HONG, ZHANG YU-HENG. TRANSPORT PROPERTIES OF TETRAGONAL AND ORTHOR- HOMBIC PHASE IN YBa2Cu3O7-x SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.38.511
    [17] HE ZHEN-HUI, CHEN ZU-YAO, ZHANG HAN, ZHANG QI-RUI. THE DIFFERENCE OF DOPING EFFECTS BETWEEN YBa2Cu3-xCoxOy AND YBa2Cu3-xZnxOy. Acta Physica Sinica, doi: 10.7498/aps.38.60
    [18] ZHAO YONG, ZHANG HAN, ZHANG TAO, ZHANG QI-RUI. THE ROLES OF Cu O PLANES AND CHAINS IN Yba2Cu3O7-y. Acta Physica Sinica, doi: 10.7498/aps.38.607
    [19] XU FENG-ZHI, YANG PEI-RAN, CHEN LIB, CHEN XIAO-LAN, CHAI ZHANG, LI BI-QING. THE RELATIONSHIP BETWEEN INTERNAL AND EXTERNAL MAGNETIC FIELD IN YBa2Cu3O7 TUBE. Acta Physica Sinica, doi: 10.7498/aps.38.1016
    [20] RUAN YAO-ZHONG, HU XUE-LONG, LI LI-PING, ZHAO YONG, PAN GUO-QIANG, CHEN ZU-YAO, ZHANG QI-RUI. INFLUENCE OF OXYGEN DEFICIENCY ON THE THERMOELECTRIC POWER IN SINGLE PHASE YBa2Cu3O7-x SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.37.1560
Metrics
  • Abstract views:  259
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2025
  • Accepted Date:  05 March 2025
  • Available Online:  27 March 2025

/

返回文章
返回
Baidu
map