-
The epitaxial orientation of YBa2Cu3O7-δ grown via the oxygen partial pressure jump pathway in transient liquid-phase assisted chemical solution deposition (TLAG-CSD) depends on the barium copper ratio in the precursor phase. To explore the underlying mechanism of this phenomenon, this article investigated the effects of different oxygen partial pressures and barium-to-copper ratio components on the barium-copper-oxygen liquid phase ([Ba-Cu-O]L) and the intermediate phase transition during the medium-high temperature heat treatment process. Research has shown that the formation of the liquid phase exhibits a point-to-surface characteristic; the temperature and morphological differences in the liquid phase are mainly determined by the composition, with oxygen partial pressure only playing a supporting role. Y:Ba:Cu=0:3:7 (0-3-7) components all appear before Y:Ba:Cu=0:2:3 (0-2-3) components in the liquid phase, with a temperature difference of 20℃ (high oxygen partial pressure) or 40℃ (low oxygen partial pressure). The experiment found that there are differences in the intermediate phase properties between these two components. Under high oxygen partial pressure, the intermediate phase BaCuO2 exhibits a single characteristic peak in the 0-3-7 component, with large and dispersed grains; the 0-2-3 component has multiple characteristic peaks, with small and dense grains. The surface area of the liquid phase region in the 0-3-7 component is smaller than that in the 0-2-3 component, resulting in different supersaturation levels of Y3+ in the liquid phases of the two components and causing orientation differences in YBCO. Finally, the basic model for the formation of fluorine-free liquid phase was summarized, and the complete [Ba-Cu-O]L film can be generated from the 0-2-3 component at high oxygen partial pressure at 750℃.
-
Keywords:
- TLAG-CSD /
- Epitaxial Orientation of YBa2Cu3O7-δ /
- [Ba-Cu-O]L /
- Barium copper ratio
-
[1] Zhou Y H, Park D, Iwasa Y 2023Natl. Sci. Rev. 10 nwad001
[2] Obradors X, Puig T 2014Supercond. Sci. Technol. 27 044003
[3] Barth C, Komorowski P, Vonlanthen P, Herzog R, Tediosi R, Alessandrini M, Bonura M, Senatore C 2019Supercond. Sci. Technol. 32 075005
[4] Chow C C T, Ainslie M D, Chau K T 2023Energy Rep. 9 1124
[5] Favre S, Ariosa D, Yelpo C, Mazini M, Faccio R 2021Mater. Chem. Phys. 266 124507
[6] Khan M Z, Rivasto E, Tikkanen J, Rijckaert H, Malmivirta M, Liedke M O, Butterling M, Wagner A, Huhtinen H, Van Driessche I, Paturi P 2019Sci. Rep. 9 15425
[7] Yang T W, Wang L M 2023IEEE Trans. Appl. Supercond. 33 1
[8] Chen X, Tao B, Zhao R, Yang K, Li Z, Xie T, Zhong Y, Zhang T, Xia Y 2023Mater. Lett. 330 133336
[9] Chen T, Xia Y, Zhao R, Wu D, Feng Z, Yang J, Xin J, Wang W, Jin K, Tao B 2022Ceram. Int. 48 17837
[10] Zhao P, Wang Y, Huang Z liang, Mao Y, Xu Y L 2015J. Cryst. Growth 415 152
[11] Jin L H, Bai Y, Li C S, Feng J Q, Lei L, Zhao G Y, Gao L, Zhang P X 2019Mater. Lett. 250 34
[12] Wesolowski D E, Patta Y R, Cima M J 2009Phys. C Supercond. 469 766
[13] Bhuiyan M S, Paranthaman M, Salama K 2006Supercond. Sci. Technol. 19 R1
[14] Chu J, Zhao Y, Khan M Z, Tang X, Wu W, Shi J, Wu Y, Huhtinen H, Suo H, Jin Z 2019Cryst. Growth Des. 19 6752
[15] Soler L, Jareño J, Banchewski J, Rasi S, Chamorro N, Guzman R, Yáñez R, Mocuta C, Ricart S, Farjas J, Roura-Grabulosa P, Obradors X, Puig T 2020Nat. Commun. 11 344
[16] Shi J, Zhao Y, Jiang G, Zhu J, Wu Y, Gao Y, Quan X, Yu X, Wu W, Jin Z 2021J. Eur. Ceram. Soc. 41 5223
[17] Chu J, Zhao Y, Ji Y, Wu W, Shi J, Hong Z, Ma L, Suo H, Jin Z 2019J. Am. Ceram. Soc. 102 5705
[18] Chu N, Liu Z, Yang Z, Tong S, Shen J, Chen J, Cai C 2022Jpn. J. Appl. Phys. 61 075509
[19] Shen J J, Liu Z Y, Chen J, Zhou X H, Li Y G, Cai C B 2022J. Supercond. Nov. Magn. 35 3147
[20] Saltarelli L, Gupta K, Rasi S, Kethamkuzhi A, Queraltó A, Garcia D, Gutierrez J, Farjas J, Roura-Grabulosa P, Ricart S, Obradors X, Puig T 2022ACS Appl. Mater. Interfaces 14 48582
[21] Rasi S, Queraltó A, Banchewski J, Saltarelli L, Garcia D, Pacheco A, Gupta K, Kethamkuzhi A, Soler L, Jareño J, Ricart S, Farjas J, Roura‐Grabulosa P, Mocuta C, Obradors X, Puig T 2022Adv. Sci. 9 2203834
[22] Vermeir P, Cardinael I, Schaubroeck J, Verbeken K, Bäcker M, Lommens P, Knaepen W, D’haen J, De Buysser K, Van Driessche I 2010Inorg. Chem. 49 4471
[23] Rasi S, Soler L, Jareño J, Banchewski J, Guzman R, Mocuta C, Kreuzer M, Ricart S, Roura-Grabulosa P, Farjas J, Obradors X, Puig T 2020J. Phys. Chem. C 124 15574
[24] Zhou X, Chen J, Huang R, Liu Z, Cai C 2024Colloids Surf. Physicochem. Eng. Asp. 691 133830
[25] Lee J H, Lee H, Lee J W, Choi S M, Yoo S I, Moon S H 2014Supercond. Sci. Technol. 27 044018
[26] Song X, Daniels G, Feldmann D M, Gurevich A, Larbalestier D 2005Nat. Mater. 4 470
[27] Heinig N F, Redwing R D, Tsu I F, Gurevich A, Nordman J E, Babcock S E, Larbalestier D C 1996Appl. Phys. Lett. 69 577
[28] Soler L B 2019 Doctoral Dissertation学位论文(Institut de Ciències de Materials de Barcelona - CSIC)
[29] Shiohara Y, Goodilin E A 2000 Handb. Phys. Chem. Rare Earths , 2000 pp67–227
[30] Zhou X, Chen J, Huang R, Tao J, Fu Y, Li M, Liu Z, Cai C 2024Colloids Surf. Physicochem. Eng. Asp. 702 135106
[31] Chu P Y, Buchanan R C 1993J. Mater. Res. 8 2134
[32] Nevřiva M, Pollert E, Matějková L, Tříska A 1988J. Cryst. Growth 91 434
[33] Zhang W, Osamura K, Ochiai S 1990J. Am. Ceram. Soc. 73
Metrics
- Abstract views: 65
- PDF Downloads: 1
- Cited By: 0