-
腔光力学质量传感器中分辨率是重要指标之一。本文提出了一个基于连续域束缚态(Bound states in the continuum,BIC)的超高分辨率质量传感方案。该方案通过将光力学腔与辅助光学腔结合,构建双腔光力系统,利用BIC模式的高品质因子特性实现质量分辨率的显著提升。在蓝失谐情况下,该系统展现出类双光力诱导透明的现象,但是相应的中间窄峰则表现为增益峰,其线宽在光力协同性等于双光腔协同性加1时变为0,对应形成BIC。双腔光力系统中间透射峰的频率偏移量与振子频移成线性关系,能实现对振子上吸附物的质量测量,并且在BIC条件下其分辨率能达到ag量级。此外,对中间透射峰本征值的虚部和实部及其灵敏度增加因子的研究表明振子的频移对中间透射峰本征值的影响很小,从而揭示出基于BIC的超高分辨率质量传感方案在频移影响下仍保持超高分辨率和精确的质量测量。Resolution is one of the key indicators in the cavity optomechanical mass sensing. The bound states in the continuum (BIC), enables extremely narrow linewidths, which has great potential for enhancing the resolution of cavity optomechanical mass sensors. In this paper, we propose a simple double-cavity optomechanical system under blue detuning conditions to realize the BIC singularity and present an ultrahigh-resolution mass sensing scheme based on BIC . By solving the linearized HeisenbergLangevin equations, the expressions for the susceptibility and transmission rate of the system are derived. The absorption spectrum of the system exhibits three peaks, where the middle narrow peak is a gain peak. When the optomechanical cooperativity coefficient equals the double-cavity cooperativity coefficient plus one, the imaginary part of the eigenvalue for the middle narrow peak becomes zero, enabling the realization of BIC. The linewidth of the middle peak is ultrasmall under this BIC condition, and the shift of the transmission peak in the transmission spectrum is linearly related to the adsorbed mass. Based on these characteristics, the system under the BIC condition can enable mass sensing with an ultrahigh resolution and resolution can reach on the order of 1 ag. Additionally Furthermore, the real and imaginary parts of the eigenvalue for the middle peak are exhibit negligible variation under the influence of mechanical resonator frequency shifts. This indicates that the mass sensing scheme based on BIC in the double-cavity optomechanical system can maintain ultrahigh resolution and precise quality measurement under mechanical resonator frequency shifts. Our scheme provides an approach to realize the BIC singularity in optomechanical systems and offers a new route to improving the resolution of mass sensors based on cavity optomechanical systems.
-
Keywords:
- Optomechanics /
- Optomechanically induced transparency /
- Mass sensing /
- Bound-states in the continuum
-
[1] Kanari-Naish L A, Clarke J, Qvarfort S, Vanner M R 2022 Quantum Sci. Technol. 7035012
[2] Barzanjeh S, Xuereb A, Gröblacher S, Paternostro M, Regal C A, Weig E M 2022 Nat. Phys. 1815
[3] Guo J K, Wu J L, Cao J, Zhang S, Su S L 2024 Phys. Rev. A 110043510
[4] Li B B, Ou L, Lei Y, Liu Y C 2021 Nanophotonics 102799
[5] Pujol‐Vila F, Güell‐Grau P, Nogués J, Alvarez M, Sepúlveda B 2023 Adv. Funct. Mater. 332213109
[6] Zhang S D, Wang J, Zhang Q, Jiao Y F, Zuo Y L, Özdemir Ş K, Qiu C W, Nori F, Jing H 2024 Optica Quantum 2222
[7] Zhang Y, Hines A, Wilson D J, Guzman F 2023 Phys. Rev. Appl. 19054004
[8] Clarke J, Neveu P, Khosla K E, Verhagen E, Vanner M R 2023 Phys. Rev. Lett. 131053601
[9] Li J J, Zhu K D 2013 Phys. Rep. 525223
[10] Xia J, Qiao Q, Zhou G, Chau F S, Zhou G 2020 Appl. Sci. 107080
[11] He Y, Feng Z, Jing Y, Xiong W, Chen X, Kuang T, Xiao G, Tan Z, Luo H 2023 Opt. Express 3137507
[12] Subhash S, Das S, Dey T N, Li Y, Davuluri S 2023 Opt. Express 31177
[13] He Q, Bai Y, Badshah F, Li L, Qi H 2024 Opt. Quantum Electron. 561140
[14] Zhang Q, Du S, Yang S, Wang Q, Zhang J, Wang D, Li Y 2024 Opt. Express 3213873
[15] Liu Y, Jiang J, Liu K, Wang S, Niu P, Wang T, Xu T, Zhang X, Liu T 2024 J. Lightwave Technol. 425753
[16] Loyez M, Adolphson M, Liao J, Yang L 2023 ACS Sens. 82440
[17] Liu F, Alaie S, Leseman Z C, Hossein-Zadeh M 2013 Opt. Express 2119555
[18] Grau A, Mercadé L, Ortiz R, Martínez A 2025 Opt. Express 331458
[19] Li T, Wang W, Yi X 2021 Phys. Rev. A 104013521
[20] He Y, Chen Q 2024 Laser Phys. 34055206
[21] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 47269
[22] Yan Xiao-Bo, Yang Liu, Tian Xue-Dong, Liu Yi-Mou, Zhang Yan 2014 Acta Phys. Sin. 63204201(in Chinese) [严晓波, 杨柳, 田雪冬, 刘一谋, 张岩2014 63204201]
[23] Xiong H, Wu Y 2018 Appl. Phys. Rev. 5031305
[24] Xie B H, Chen H J, Sun Y 2023 Acta Phy. Sin. 72154203(in Chinese) [谢宝豪, 陈华俊, 孙轶2023 72154203]
[25] Wang Q, Li W J 2017 Int. J. Theor. Phys. 561346
[26] Li Z, You X, Li Y, Liu Y C, Peng K 2018 Phys. Rev. A 97033806
[27] Shang L, Chen B, Xing L L, Chen J B, Xue H B, Guo K X 2021 Chin. Phys. B 30054209
[28] Liu J H, Yu Y F, Wu Q, Wang J D, Zhang Z M 2021 Opt. Express 2912266
[29] Zhang W, Shen H Z 2024 Phys. Rev. A 109033701
[30] Li J J, Zhu K D 2012 Appl. Phys. Lett. 101141905
[31] Jiang C, Cui Y, Zhu K D 2014 Opt. Express 2213773
[32] He Y 2015 Appl. Phys. Lett. 106121905
[33] Chen H J, Chen C Z, Li Y, Fang X W, Tang X D 2017 Opt. Commun. 38273
[34] Liu S, Liu B, Wang J, Zhao L, Yang W X 2021 J. Appl. Phys. 129084504
[35] Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2020 Phys. Rev. Lett. 125147202
[36] Friedrich H, Wintgen D 1985 Phys. Rev. A 323231
[37] Bi Qianhui, Peng Yujuan, Chen Run, Wang Shuming 2023 Acta Opt. Sin. 431623008(in Chinese) [毕千惠, 彭于娟, 陈润, 王漱明2023光学学报431623008]
[38] Dell’Olio F 2025 Photonics 1248
[39] Thapa D K, Biswas S 2025 Mater. Horiz. published online, doi: 10.1039/D5MH00413F
[40] Wang Y, Qi Y, Zhou Z, Li Z, Wang X 2024 Phys. Scr. 99105533
[41] Yang S, Zhang X, Liu J, Feng H, Meng H, Jia Y, Gao Y 2025 Phys. Lett. A 547130540
[42] Li J sheng, Xue Y Y, Guo F lei 2024 Opt. Commun. 554130225
[43] Du X, Xie S, Nan H, Sun S, Shen W, Yang J, Guan X 2023 Photonics 10980
[44] Peng J, Lin X, Yan X, Yan X, Hu X, Yao H, Liang L, Ma G 2024 Nanomaterials 14799
[45] Liu Z, Guo T, Tan Q, Hu Z, Sun Y, Fan H, Zhang Z, Jin Y, He S 2023 Nano. Lett. 2310441
[46] Liu H G, Zhang X Y, Nan X Y, Zhao E G, Liu H T 2024 Acta. Phys. Sin. 73047802(in Chinese) [刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛2024 73047802]
[47] Qian Z, Zhao M M, Hou B P, Zhao Y H 2017 Opt. Express 2533097
[48] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10394
[49] Zhang J, Peng B, Özdemir Ş K, Pichler K, Krimer D O, Zhao G, Nori F, Liu Y xi, Rotter S, Yang L 2018 Nat. Photonics 12479
[50] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 861391
[51] Chang Y, Shi T, Liu Y xi, Sun C P, Nori F 2011 Phys. Rev. A 83063826
[52] Fu C B, Yan X B, Gu K H, Cui C L, Wu J H, Fu T D 2013 Phys. Rev. A 87053841
[53] Zhang X Y, Zhou Y H, Guo Y Q, Yi X X 2018 Phys. Rev. A 98033832
[54] Mirza I M, Ge W, Jing H 2019 Opt. Express 2725515
[55] Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019 Phys. Rev. A 100023820
[56] Li S, Yang X, Cao X, Zhang C, Xie C, Wang H 2008 Phys. Rev. Lett. 101073602
[57] Kou J, Wan R G, Kuang S Q, Jiang L, Zhang L, Kang Z H, Wang H H, Gao J Y 2011 Opt. Commun. 2841603
[58] Wang H, Gu X, Liu Y xi, Miranowicz A, Nori F 2014 Phys. Rev. A 90023817
[59] Lukin M D, Yelin S F, Fleischhauer M, Scully M O 1999 Phys. Rev. A 603225
[60] Liu C, Gong S, Cheng D, Fan X, Xu Z 2006 Phys. Rev. A 73025801
[61] Zhang D W, Zheng L L, Wang M, Zhou Y, Lü X Y 2024 Phys. Rev. A 109023529
[62] Chen H J 2020 Laser Phys. 30115203
[63] Liu J, Zhu K D 2018 Photonics Res. 6867
[64] Aleebrahim E, Harouni M B, Amooghorban E 2022 Phys. Rev. A 105062609
计量
- 文章访问数: 34
- PDF下载量: 2
- 被引次数: 0