-
结合表面缺陷半无限光子晶体Tamm态与多孔硅光学传感机理, 在光子晶体表面缺陷腔中引入多孔硅, 并利用其高效的承载机制, 提出基于多孔硅表面缺陷光子晶体Tamm态的折射率传感结构. 在半无限光子晶体中缺陷腔与原来的周期性分层介质结构的界面上存在Tamm态, 通过入射角度调制使其在缺陷腔中实现多次全反射, 并在缺陷腔中加入吸收介质, 使谐振波长在缺陷腔中完成衰荡, 从而在反射谱中得到缺陷峰; 调整光子晶体参数, 使缺陷峰的半高全宽得到优化, 提高其品质因数(Q值); 在此基础上, 根据Goos-Hänchen相位移与谐振波长的关系, 建立由待测样本折射率改变所导致的多孔硅表面吸附层有效折射率变化与缺陷峰值波长漂移之间的关系模型, 并分析其折射率传感特性. 结果表明, 此生物传感结构Q值为1429, 灵敏度为546.67 nm/RIU, 证明了该传感结构的有效性, 可为高Q值和高灵敏度折射率传感器的设计提供一定的理论参考.A refractive index sensing structure based on the Tamm state of photonic crystal with surface defect is proposed by combing the Tamm state of semi-infinite photonic crystal with the optical sensing mechanism of porous silicon, in which the efficient bearing mechanism of the porous silicon is introduced into the surface defect cavity. The existence of Tamm state is demonstrated at the edge between the defect cavity and the periodical photonic crystal structure, and the total reflection in the defect cavity is formed by adjusting the incident angle. The resonant defect peak is obtained in the reflection spectrum by adding an absorbing medium into the defect cavity in order to reduce the reflectivity of the resonant wavelength. The full width at half maximum and the quality factor (Q value) can be optimized by adjusting the parameters of photonic crystal. Based on those results, according to the relationship between Goos-Hänchen phase shift and the resonant wavelength, the model for the relationship between the resonant wavelength and the effective refractive index variation of porous silicon adsorbing layer caused by the change of the refractive index of the sample is established, and its refractive index sensing characteristics are analyzed. The numerical simulation results show that the Q value can attain to 1429 and the sensitivity is about 546.67 nm·RIU-1, which can demonstrate the effectiveness of the structure design and provide some theoretical references for designing the refractive index sensors with high Q values and sensitivities.
-
Keywords:
- photonic crystal /
- porous silicon /
- surface defect cavity /
- refractive index sensor
[1] Zhang H Y, Yang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y, Wang P F 2012 Chin. Phys. B 21 020601
[2] Zhang D C, Yan Y R, Li Q, Yu T X, Cheng W, Wang L, Ju H X, Ding S J 2012 J. Biotechnol. 160 123
[3] Endo T, Ozawa S, Okuda N, Yanagida Y, Tanaka S, Hatsuzawa T 2010 Sens. Actuat. B: Chemical 148 269
[4] Li Y H, Yan Y R, Lei Y N, Zhao D, Yuan T X, Zhang D C, Cheng W, Ding S J 2014 Colloids and Surfaces B: Biointerfaces 120 15
[5] Chen F F, Fei W J, Sun L, Li Q H, Di J W, Wu Y 2014 Sens. Actuat. B: Chemical 191 337
[6] Maharana P K, Jha R 2012 Sens. Actuat. B: Chemical 169 161
[7] Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205 (in Chinese) [陈颖, 王文跃, 于娜 2014 63 034205]
[8] Feng S, Wang Y Q 2011 Chin. Phys. B 20 104207
[9] Derbali J, Abdel Malek F, Bouchriha H 2013 Optik 124 3936
[10] Jiang B, Liu A J, Chen W, Xing M X, Zhou W J, Zheng W H 2010 Acta Phys. Sin. 59 8548 (in Chinese) [江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华 2010 59 8548]
[11] Zhang H Y, Jia Z H, L X Y, Zhou J, Chen L L, Liu R X, Ma J 2013 Biosens. Bioelectron. 44 89
[12] Wu C, Rong G G, Xu J T, Pan S F, Zhu Y X 2012 Physica E 44 1787
[13] Rostami A, Khezri M, Golmohammadi S 2012 Optik 123 847
[14] Zhang D L, Cherkaev E, Lamoureux M P 2011 Appl. Math. Computat. 217 7092
[15] Sun P, Hu M, Liu B, Sun F Y, Xu L J 2011 Acta Phys. Sin. 60 057303 (in Chinese) [孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 60 057303]
-
[1] Zhang H Y, Yang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y, Wang P F 2012 Chin. Phys. B 21 020601
[2] Zhang D C, Yan Y R, Li Q, Yu T X, Cheng W, Wang L, Ju H X, Ding S J 2012 J. Biotechnol. 160 123
[3] Endo T, Ozawa S, Okuda N, Yanagida Y, Tanaka S, Hatsuzawa T 2010 Sens. Actuat. B: Chemical 148 269
[4] Li Y H, Yan Y R, Lei Y N, Zhao D, Yuan T X, Zhang D C, Cheng W, Ding S J 2014 Colloids and Surfaces B: Biointerfaces 120 15
[5] Chen F F, Fei W J, Sun L, Li Q H, Di J W, Wu Y 2014 Sens. Actuat. B: Chemical 191 337
[6] Maharana P K, Jha R 2012 Sens. Actuat. B: Chemical 169 161
[7] Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205 (in Chinese) [陈颖, 王文跃, 于娜 2014 63 034205]
[8] Feng S, Wang Y Q 2011 Chin. Phys. B 20 104207
[9] Derbali J, Abdel Malek F, Bouchriha H 2013 Optik 124 3936
[10] Jiang B, Liu A J, Chen W, Xing M X, Zhou W J, Zheng W H 2010 Acta Phys. Sin. 59 8548 (in Chinese) [江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华 2010 59 8548]
[11] Zhang H Y, Jia Z H, L X Y, Zhou J, Chen L L, Liu R X, Ma J 2013 Biosens. Bioelectron. 44 89
[12] Wu C, Rong G G, Xu J T, Pan S F, Zhu Y X 2012 Physica E 44 1787
[13] Rostami A, Khezri M, Golmohammadi S 2012 Optik 123 847
[14] Zhang D L, Cherkaev E, Lamoureux M P 2011 Appl. Math. Computat. 217 7092
[15] Sun P, Hu M, Liu B, Sun F Y, Xu L J 2011 Acta Phys. Sin. 60 057303 (in Chinese) [孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 60 057303]
计量
- 文章访问数: 6465
- PDF下载量: 584
- 被引次数: 0