Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring the tuning mechanism of multipolar quasi-continuous domain bound states in tetramer metasurface

Meng Xiang-Yu Li Tao Yu Bin-Bin Tai Yong-Hang

Citation:

Exploring the tuning mechanism of multipolar quasi-continuous domain bound states in tetramer metasurface

Meng Xiang-Yu, Li Tao, Yu Bin-Bin, Tai Yong-Hang
PDF
HTML
Get Citation
  • High-quality factor (high-Q) resonance has broad prospects in applications such as in narrow-band filtering, slow-light devices, and nonlinear optics interaction enhanced to highly sensitive sensing. Previous methods of designing high-Q resonance suffered intrinsic drawbacks such as high-volume cavities or large-scale bending radii. However, recently, a new approach to designing high-Q resonances has begun to attract public attention on the basis of asymmetric metasurfaces that are related to the bound states in the continuum (BIC) phenomenon. Constructing BIC resonance in electromagnetic metasurface can generate sharp resonant transmission peak. Therefore, there is growing interest in utilizing BIC to achieve metasurface with high-Q. However, most of existing studies are based on single BIC, and few studies focusing on multiband BICs and multiple forms of symmetry breaking. In this work, we propose an all-dielectric metasurface composed of tetrameric cuboids. By etching two elliptical cylinders in each cuboid, the metasurface can simultaneously support in-plane symmetry breaking, displacement perturbations and periodic perturbations. We first use multipole calculations to analyze the physical mechanism by which the metasurface generates quasi-BIC under these three conditions. It is confirmed that the Q factor and resonant peak position of quasi-BIC can be controlled by adjusting the asymmetry parameters. Subsequently, we introduce the in-plane symmetry breaking, displacement perturbations and periodic perturbations into the metasurface simultaneously and generate five quasi-BIC modes, whose numbers and positions can be flexibly adjusted, and the largest Q factor is 58039. In summary, this work provides a new practical design concept for realizing high-Q all-dielectric metasurfaces, which can be used to improve the sensitivity of multi-parameter sensors.
      Corresponding author: Yu Bin-Bin, pai3_14@ucas.ac.cn ; Tai Yong-Hang, taiyonghang@ynnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62365017), the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ23A040004), and the Foundation for Excellent Young Scientists of Yunnan Province, China (Grant No. 202301AW070001).
    [1]

    von Neumann J, Wigner E P 1929 Phys. Z. 30 467

    [2]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510Google Scholar

    [3]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [4]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljacic M 2013 Nature 499 188Google Scholar

    [5]

    Urseel F 1997 Phys. Eng. Sci. 435 575

    [6]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [7]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [8]

    Retzler C H 2001 Appl. Ocean Res. 23 249Google Scholar

    [9]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2009 Europhys. Lett. 88 20006Google Scholar

    [10]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2011 J. Fluid Mech. 666 445Google Scholar

    [11]

    EVERY A G 2008 Phys. Rev. B 78 174104.Google Scholar

    [12]

    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D Y, Neshev D N, Kivshar Y S, Altug H 2018 Science 360 1105Google Scholar

    [13]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [14]

    Chen S S, Zhang W X, Yang B, Wu T, Zhang X D 2019 Sci. Rep. 9 5551Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Yu J B, Ma B Z, OuYang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [18]

    Huang L J, Jin R, Zhou C B, et al. 2023 Nat. Commun. 14 3433Google Scholar

    [19]

    Zhou C B, Huang L J, Jin R, et al. 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [20]

    Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [21]

    Mikheeva E, Koshelev K, Choi D Y, Kruk S, Lumeau J, Abdeddaim R, Voznyuk I, Enoch S, Kivshar Y 2019 Opt. Express 27 33847Google Scholar

    [22]

    Chen X, Fan W H 2020 Nanomaterials 10 623Google Scholar

    [23]

    Cai Y P, Huang Y, Zhu K Y, Wu H H 2021 Opt. Lett. 46 4049Google Scholar

    [24]

    杨磊 2022 硕士学位论文 (北京: 北京邮电大学)

    Yang L 2022 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [25]

    Tang C J, Yan B, Wang Q G, Chen J, Yan Z D, Liu F X, Chen N B, Sui C H 2017 Sci. Rep. 7 582Google Scholar

    [26]

    Jin R, Huang L J, Zhou C B, et al. 2023 Nano Lett. 23 9105Google Scholar

    [27]

    Yu J B, Qin R, Ying Y B, Qiu M, Li Q 2023 Adv. Mat. 35 2302478Google Scholar

    [28]

    Chai R H, Liu W W, Li Z C, Cheng H, Tian J G, Chen S Q 2021 Phys. Rev. B 104 075149Google Scholar

  • 图 1  (a) 超表面单元平面俯视图; (b) x偏振光正入射超表面示意图

    Figure 1.  (a) Top view of metasurface unit; (b) schematic of the metasurface with x-polarized normal incidence light.

    图 2  (a)面内破缺后超表面单元平面俯视图; (b)旋转角θ不同时, x偏振光入射对应的透射率曲线; (c)准BIC的Q因子随1/α2的变化曲线; (d)厚度h不同时, x偏振光入射对应的透射率曲线

    Figure 2.  (a) Top view of the metasurface unit after in-plane symmetry perturbation; (b) transmittance spectra for x-polarized incident light and different rotation angle θ; (c) Q-factors of QBIC plotted as functions of 1/α2; (d) transmittance spectra for x-polarized incident light and different thickness h.

    图 3  (a) x偏振光入射时的多极分解结果, ED, MD, TD, EQ, MQ分别表示电偶极子、磁偶极子、环偶极子、电四极子、磁四极子; (b)磁偶极子的散射功率在x, y, z方向上的分量; (c) x-y平面的电磁场分布; (d) y-z平面的电磁场分布

    Figure 3.  (a) Multipole decomposition results during x-polarized normal incidence light, ED, MD, TD, EQ, MQ represent electric dipole, magnetic dipole, toroidal dipole electric, quadrupole and magnetic quadrupole, respectively; (b) x, y and z components of the MD; (c) electromagnetic field distribution in the x-y plane; (d) electromagnetic field distribution in the y-z plane.

    图 4  (a)位移扰动后超表面单元平面俯视图; (b)参数Δg不同时, x偏振光入射对应的透射率曲线; (c)准BIC模式1的Q因子随1/β2的变化曲线; (d)准BIC模式2的Q因子随1/β2的变化曲线; (e)厚度h不同时, x偏振光入射对应的透射率曲线

    Figure 4.  (a) Top view of the metasurface unit after displacement perturbation; (b) transmittance spectra for x-polarized incident light and different parameters Δg; (c) Q-factors of QBIC mode 1 plotted as functions of 1/β2; (d) Q-factors of QBIC mode 2 plotted as functions of 1/β2; (e) transmittance spectra for x-polarized incident light and different thickness h.

    图 5  (a) x偏振光入射时产生的准BIC模式1的多极分解结果; (b)准BIC模式1的磁偶极子的散射功率在x, y, z方向上的分量; (c)准BIC模式1在x-z平面的电磁场分布; (d)准BIC模式1在y-z平面的电磁场分布; (e) x偏振光入射时产生的准BIC模式2的多极分解结果; (f)准BIC模式2的环偶极子的散射功率在x, y, z方向上的分量; (g)准BIC模式2在x-y平面的电磁场分布; (h)准BIC模式2在y-z平面的电磁场分布

    Figure 5.  (a) Multipole decomposition results of QBIC mode 1 during x-polarized normal incidence light; (b) components of the MD in the x, y, z directions of QBIC mode 1; (c) electromagnetic field distribution in the x-z plane of QBIC mode 1; (d) electromagnetic field distribution in the y-z plane of QBIC mode 1; (e) multipole decomposition results of QBIC mode 2 during x-polarized normal incidence light; (f) components of the TD in the x, y, z directions of QBIC mode 2; (g) electromagnetic field distribution in the x-y plane of QBIC mode 2; (h) electromagnetic field distribution in the y-z plane of QBIC mode 2.

    图 6  (a)当Px > Py时, 超表面单元平面俯视图; (b) Px不同时, x偏振光入射对应的透射率曲线; (c)准BIC模式的Q因子随$ 1/\gamma _2^2 $的变化曲线; (d)厚度h不同时, x偏振光入射对应的透射率曲线

    Figure 6.  (a) When Px > Py, the top view of the metasurface unit; (b) transmittance spectra for x-polarized incident light and different Px; (c) Q-factors of QBIC plotted as functions of $ 1/\gamma _2^2 $; (d) transmittance spectra for x-polarized incident light and different thickness h.

    图 7  (a) x偏振光入射时的多极分解结果; (b)环偶极子的散射功率在x, y, z方向上的分量; (c) x-y平面的电磁场分布; (d) y-z平面的电磁场分布

    Figure 7.  (a) Multipole decomposition results during x-polarized normal incidence light; (b) x, y and z components of the TD; (c) electromagnetic field distribution in the x-y plane; (d) electromagnetic field distribution in the y-z plane.

    图 8  (a)当Py > Px时, 超表面单元平面俯视图; (b) Py不同时, x偏振光入射对应的透射率曲线; (c)准BIC模式的Q因子随$ 1/\gamma _2^2 $的变化曲线; (d)厚度h不同时, x偏振光入射对应的透射率曲线

    Figure 8.  (a) When Py > Px, the top view of the metasurface unit; (b) transmittance spectra for x-polarized incident light and different Py; (c) Q-factors of QBIC plotted as functions of $ 1/\gamma _2^2 $; (d) transmittance spectra for x-polarized incident light and different thickness h.

    图 9  (a) x偏振光入射时的多极分解结果; (b)环偶极子的散射功率在x, y, z方向上的分量; (c) x-y平面的电磁场分布; (d) y-z平面的电磁场分布

    Figure 9.  (a) Multipole decomposition results during x-polarized normal incidence light; (b) x, y and z components of the TD; (c) electromagnetic field distribution in the x-y plane; (d) electromagnetic field distribution in the y-z plane.

    图 10  (a)超表面单元平面俯视图; (b) x偏振光入射对应的透射率曲线

    Figure 10.  (a) Top view of the metasurface unit; (b) transmittance spectra for x-polarized incident light.

    图 11  (a) x偏振光入射时产生的准BIC模式1的多极分解结果; (b)准BIC模式1的磁偶极子的散射功率在x, y, z方向上的分量; (c)准BIC模式1在x-y平面的电磁场分布; (d)准BIC模式1在y-z平面的电磁场分布; (e) x偏振光入射时产生的准BIC模式2的多极分解结果; (f)准BIC模式2的磁偶极子的散射功率在x, y, z方向上的分量; (g)准BIC模式2在x-z平面的电磁场分布; (h)准BIC模式2在y-z平面的电磁场分布; (i) x偏振光入射时产生的准BIC模式3的多极分解结果; (j)准BIC模式3的环偶极子的散射功率在x, y, z方向上的分量; (k)准BIC模式3在x-y平面的电磁场分布; (l)准BIC模式3在y-z平面的电磁场分布; (m) x偏振光入射时产生的准BIC模式4的多极分解结果; (n)准BIC模式4的磁偶极子的散射功率在x, y, z方向上的分量; (o)准BIC模式4在x-y平面的电磁场分布; (p)准BIC模式4在y-z平面的电磁场分布; (q) x偏振光入射时产生的准BIC模式5的多极分解结果; (r)准BIC模式5的磁偶极子的散射功率在x, y, z方向上的分量; (s)准BIC模式5在x-y平面的电磁场分布; (t)准BIC模式5在y-z平面的电磁场分布

    Figure 11.  (a) Multipole decomposition results of QBIC mode 1 during x-polarized normal incidence light; (b) Components of the MD in the x, y, z directions of QBIC mode 1; (c) electromagnetic field distribution in the x-y plane of QBIC mode 1; (d) electromagnetic field distribution in the y-z plane of QBIC mode 1; (e) multipole decomposition results of QBIC mode 2 during x-polarized normal incidence light; (f) components of the MD in the x, y, z directions of QBIC mode 2; (g) electromagnetic field distribution in the x-z plane of QBIC mode 2; (h) electromagnetic field distribution in the y-z plane of QBIC mode 2; (i) multipole decomposition results of QBIC mode 3 during x-polarized normal incidence light; (j) components of the TD in the x, y, z directions of QBIC mode 3; (k) electromagnetic field distribution in the x-y plane of QBIC mode 3; (l) Electromagnetic field distribution in the y-z plane of QBIC mode 3; (m) multipole decomposition results of QBIC mode 4 during x-polarized normal incidence light; (n) components of the MD in the x, y, z directions of QBIC mode 4; (o) electromagnetic field distribution in the x-y plane of QBIC mode 4; (p) electromagnetic field distribution in the y-z plane of QBIC mode 4; (q) Multipole decomposition results of QBIC mode 5 during x-polarized normal incidence light; (r) components of the MD in the x, y, z directions of QBIC mode 5; (s) electromagnetic field distribution in the x-y plane of QBIC mode 5; (t) electromagnetic field distribution in the y-z plane of QBIC mode 5.

    Baidu
  • [1]

    von Neumann J, Wigner E P 1929 Phys. Z. 30 467

    [2]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510Google Scholar

    [3]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [4]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljacic M 2013 Nature 499 188Google Scholar

    [5]

    Urseel F 1997 Phys. Eng. Sci. 435 575

    [6]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [7]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [8]

    Retzler C H 2001 Appl. Ocean Res. 23 249Google Scholar

    [9]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2009 Europhys. Lett. 88 20006Google Scholar

    [10]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2011 J. Fluid Mech. 666 445Google Scholar

    [11]

    EVERY A G 2008 Phys. Rev. B 78 174104.Google Scholar

    [12]

    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D Y, Neshev D N, Kivshar Y S, Altug H 2018 Science 360 1105Google Scholar

    [13]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [14]

    Chen S S, Zhang W X, Yang B, Wu T, Zhang X D 2019 Sci. Rep. 9 5551Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Yu J B, Ma B Z, OuYang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [18]

    Huang L J, Jin R, Zhou C B, et al. 2023 Nat. Commun. 14 3433Google Scholar

    [19]

    Zhou C B, Huang L J, Jin R, et al. 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [20]

    Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [21]

    Mikheeva E, Koshelev K, Choi D Y, Kruk S, Lumeau J, Abdeddaim R, Voznyuk I, Enoch S, Kivshar Y 2019 Opt. Express 27 33847Google Scholar

    [22]

    Chen X, Fan W H 2020 Nanomaterials 10 623Google Scholar

    [23]

    Cai Y P, Huang Y, Zhu K Y, Wu H H 2021 Opt. Lett. 46 4049Google Scholar

    [24]

    杨磊 2022 硕士学位论文 (北京: 北京邮电大学)

    Yang L 2022 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [25]

    Tang C J, Yan B, Wang Q G, Chen J, Yan Z D, Liu F X, Chen N B, Sui C H 2017 Sci. Rep. 7 582Google Scholar

    [26]

    Jin R, Huang L J, Zhou C B, et al. 2023 Nano Lett. 23 9105Google Scholar

    [27]

    Yu J B, Qin R, Ying Y B, Qiu M, Li Q 2023 Adv. Mat. 35 2302478Google Scholar

    [28]

    Chai R H, Liu W W, Li Z C, Cheng H, Tian J G, Chen S Q 2021 Phys. Rev. B 104 075149Google Scholar

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [4] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [5] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [6] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [7] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [8] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [9] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] Xu Ping, Xiao Yu-Fei, Huang Hai-Xuan, Yang Tuo, Zhang Xu-Lin, Yuan Xia, Li Xiong-Chao, Wang Meng-Yu, Xu Hai-Dong. A new method of implementing simultaneous multiplexing holographic display of wavelength and polarization state with simple structure metasurface. Acta Physica Sinica, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [11] Du Qian, Chen Yi-Hang. Enhancing third-harmonic generation by quasi bound states in continuum in silicon nanoparticle arrays. Acta Physica Sinica, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [12] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [13] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Feng Mao-Chang, Li Yong-Feng, Zhang Jie-Qiu, Wang Jia-Fu, Wang Chao, Ma Hua, Qu Shao-Bo. Research of a wide-angle backscattering enhancement metasurface. Acta Physica Sinica, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
Metrics
  • Abstract views:  2419
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  18 February 2024
  • Accepted Date:  05 March 2024
  • Available Online:  02 April 2024
  • Published Online:  20 May 2024

/

返回文章
返回
Baidu
map