Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum control based on solid-state nuclear magnetic resonance and its applications

Zhao Liqiang Li Yuchen Yin Haochuan Zhang Shengyu Wu Ze Peng Xinhua

Citation:

Quantum control based on solid-state nuclear magnetic resonance and its applications

Zhao Liqiang, Li Yuchen, Yin Haochuan, Zhang Shengyu, Wu Ze, Peng Xinhua
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As an important technique for the characterization of materials, solid-state NMR has been widely used in many fields such as physics, materials science, chemistry and biology. In recent years, solid-state NMR has gradually shown important research value and application potential in cutting-edge quantum technologies due to the abundant many-body interactions and pulse control methods. In this paper, we systematically introduce the research objects and theoretical foundations of solid-state NMR, including important nuclear spin interaction mechanisms and their Hamiltonian forms. We also introduce typical dynamical control methods of solid-state nuclear spins, such as such as dynamical decoupling and magic-angle spinning. Furthermore, we focus on recent advancements in the quantum control based on solid-state NMR, including nuclear spin polarization enhancement techniques and the control techniques of Floquet average Hamiltonians. Finally, by presenting some important research works, we discuss the applications of solid-state NMR quantum control technologies in the field of quantum simulation.
  • 图 1  (a) 金刚烷样品分子示意图. (b) 氟磷灰石样品原子排布示意图

    Figure 1.  (a) Schematic diagram of adamantane molecule. (b) Schematic diagram of the atomic configuration of a fluoroapatite sample

    图 2  交叉极化的脉冲序列图. (a) HHCP; (b) DOCP; (c) ADCP; (d) AD/DO-CP

    Figure 2.  Pulse sequences of cross polarization. (a) HHCP; (b) DOCP; (c) ADCP; (d) AD/DO-CP

    图 3  16脉冲序列

    Figure 3.  16-pulse sequence

    图 4  Magic echo序列

    Figure 4.  Magic echo sequence

    图 5  WAHUHA序列

    Figure 5.  WAHUHA sequence

    图 6  魔角旋转示意图

    Figure 6.  Schematic diagram of magic angle spinning

    图 7  魔角旋转条件下的偶极恢复脉冲序列[44]

    Figure 7.  Pulse sequence of dipolar recovery at the magic angle

    图 8  测量多量子相干的脉冲序列

    Figure 8.  Pulse sequence for measurement of multiple quantum coherences

    表 1  利用8脉冲序列实现不同目标哈密顿量所对应的脉冲欧拉角设置

    Table 1.  Setup of the Euler angles of 8-pulse sequences for realizing different target Hamiltonians

    $ \hat{H}_{\rm tar} $ C 单位(π), $ n=1, 2, 3, 4 $
    $ \displaystyle\sum_{i<j}J_{ij}[2\hat{I}^i_z\hat{I}^j_z-\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $1$ \beta_{n}=1, \gamma_n=\dfrac{(n-1)}{2} $
    –0.5$ \beta_{n}=\dfrac{1}{2}, \gamma_n=\dfrac{(n-1)}{2} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_x\hat{I}^j_x-\hat{I}^i_y\hat{I}^j_y] $1$ \beta_{n}=0.304, \gamma_n=\dfrac{1+4(-1)^n}{4} $
    –1$ \beta_{n}=0.304, \gamma_n=\dfrac{3+4(-1)^n}{4} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_z] $$ \dfrac{1}{3} $$ \beta_{n}=0.304, \gamma_n=\dfrac{3(-1)^n}{4} $
    $ \dfrac{-1}{3} $$ \beta_{n}=0.304, \gamma_n=\dfrac{(-1)^n}{4} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_z\hat{I}^j_y+\hat{I}^i_y\hat{I}^j_z] $$ \dfrac{1}{3} $$ \beta_{n}=0.304, \gamma_n=\dfrac{2+(-1)^n}{4} $
    $ \dfrac{-1}{3} $$ \beta_{n}=0.304, \gamma_n=\dfrac{2+(-1)^n}{-4} $
    $ \displaystyle\sum_{i<j}J_{ij}[\hat{I}^i_y\hat{I}^j_x+\hat{I}^i_x\hat{I}^j_y] $1$ \beta_{n}=0.304, \gamma_n=\dfrac{1+(-1)^n}{2} $
    –1$ \beta_{n}=0.304, \gamma_n=\dfrac{2+(-1)^n}{2} $
    DownLoad: CSV
    Baidu
  • [1]

    Lloyd S 1993 Science 261 1569Google Scholar

    [2]

    DiVincenzo D P 1995 Physical Review A 51 1015Google Scholar

    [3]

    Cory D G, Fahmy A F, Havel T F 1997 Proceedings of the National Academy of Sciences 94 1634Google Scholar

    [4]

    Gershenfeld N A, Chuang I L 1997 science 275 350Google Scholar

    [5]

    Jones J A 2011 Progress in nuclear magnetic resonance spectroscopy 59 91Google Scholar

    [6]

    Vandersypen L M, Chuang I L 2004 Reviews of modern physics 76 1037

    [7]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser S J 2005 Journal of magnetic resonance 172 296Google Scholar

    [8]

    Haeberlen U 2012 High Resolution NMR in solids selective averaging: supplement 1 advances in magnetic resonance, vol. 1 (Elsevier

    [9]

    Kane B E 1998 nature 393 133Google Scholar

    [10]

    Pham L M, DeVience S J, Casola F, Lovchinsky I, Sushkov A O, Bersin E, Lee J, Urbach E, Cappellaro P, Park H, et al 2016 Physical Review B 93 045425Google Scholar

    [11]

    Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J, Rey A M 2017 Nature Physics 13 781Google Scholar

    [12]

    Geier S, Thaicharoen N, Hainaut C, Franz T, Salzinger A, Tebben A, Grimshandl D, Zürn G, Weidemüller M 2021 Science 374 1149Google Scholar

    [13]

    Miller C, Carroll A N, Lin J, Hirzler H, Gao H, Zhou H, Lukin M D, Ye J 2024 Nature 633 332Google Scholar

    [14]

    Warren W S 1997 Science 277 1688Google Scholar

    [15]

    Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, et al 2000 Fortschritte der Physik: Progress of Physics 48 875Google Scholar

    [16]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰, 等 2015 64 140302Google Scholar

    [17]

    Krojanski H G, Suter D 2006 Physical review letters 97 150503Google Scholar

    [18]

    Cappellaro P, Emerson J, Boulant N, Ramanathan C, Lloyd S, Cory D G 2005 Physical review letters 94 020502Google Scholar

    [19]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349 846Google Scholar

    [20]

    Wei K X, Ramanathan C, Cappellaro P 2018 Physical review letters 120 070501Google Scholar

    [21]

    Rovny J, Blum R L, Barrett S E 2018 Physical review letters 120 180603Google Scholar

    [22]

    Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C, Cappellaro P 2019 Physical review letters 123 090605Google Scholar

    [23]

    Sánchez C M, Chattah A K, Wei K X, Buljubasich L, Cappellaro P, Pastawski H M 2020 Physical review letters 124 030601Google Scholar

    [24]

    Peng P, Yin C, Huang X, Ramanathan C, Cappellaro P 2021 Nature Physics 17 444Google Scholar

    [25]

    Peng P, Ye B, Yao N Y, Cappellaro P 2023 Nature Physics 19 1027Google Scholar

    [26]

    Stasiuk A, Cappellaro P 2023 Physical Review X 13 041016

    [27]

    Li Y, Zhou T G, Wu Z, Peng P, Zhang S, Fu R, Zhang R, Zheng W, Zhang P, Zhai H, et al. 2024 Nature Physics

    [28]

    Cappellaro P, Ramanathan C, Cory D G 2007 Physical review letters 99 250506Google Scholar

    [29]

    Álvarez G A, Suter D 2010 Physical Review Letters 104 230403Google Scholar

    [30]

    Ramanathan C, Cappellaro P, Viola L, Cory D G 2011 New Journal of Physics 13 103015Google Scholar

    [31]

    Kaur G, Cappellaro P 2012 New Journal of Physics 14 083005Google Scholar

    [32]

    Ernst M 2003 Journal of Magnetic Resonance 162 1Google Scholar

    [33]

    Souza A M, Álvarez G A, Suter D 2012 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370 4748Google Scholar

    [34]

    Medek A, Harwood J S, Frydman L 1995 Journal of the American Chemical Society 117 12779Google Scholar

    [35]

    Levitt M H, Grant D M, Harris R K 2007 Solid State NMR Studies of Biopolymers

    [36]

    Weingarth M, Demco D E, Bodenhausen G, Tekely P 2009 Chemical Physics Letters 469 342Google Scholar

    [37]

    Hartmann S, Hahn E 1962 Physical Review 128 2042Google Scholar

    [38]

    Li Y, Zhang S, Wu Z, Peng X, Fu R 2022 Magnetic Resonance Letters 2 147Google Scholar

    [39]

    Thankamony A S L, Wittmann J J, Kaushik M, Corzilius B 2017 Progress in nuclear magnetic resonance spectroscopy 102 120

    [40]

    Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667Google Scholar

    [41]

    Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, Neven H 2018 Nature Physics 14 595Google Scholar

    [42]

    Dowling J P, Milburn G J 2003 Series A: Mathematical, Physical and Engineering Sciences 361 1655Google Scholar

    [43]

    Levitt M H 2008 Spin dynamics: basics of nuclear magnetic resonance (John Wiley & Sons

    [44]

    Duer M J 2008 Solid state NMR spectroscopy: principles and applications (John Wiley & Sons

    [45]

    Abragam A 1961 The Principles of Nuclear Magnetism (Oxford University Press

    [46]

    王义遒 1964 1

    [47]

    蒲鹏, 徐灿, 解淑玉 2011 物理化学学报 27 2227Google Scholar

    [48]

    Resing H 1969 Molecular Crystals and Liquid Crystals 9 101

    [49]

    Krojanski H G, Suter D 2004 Physical review letters 93 090501Google Scholar

    [50]

    Krojanski H G, Suter D 2006 Physical Review A—Atomic, Molecular, and Optical Physics 74 062319Google Scholar

    [51]

    Lovrić M, Krojanski H G, Suter D 2007 Physical Review A—Atomic, Molecular, and Optical Physics 75 042305Google Scholar

    [52]

    Álvarez G A, Suter D 2011 Physical review letters 107 230501Google Scholar

    [53]

    Alvarez G A, Suter D 2011 Physical Review A—Atomic, Molecular, and Optical Physics 84 012320Google Scholar

    [54]

    Álvarez G A, Kaiser R, Suter D 2013 Annalen der Physik 525 833Google Scholar

    [55]

    Sánchez C M, Chattah A K, Pastawski H M 2022 Physical Review A 105 052232Google Scholar

    [56]

    Zhou T, Swingle B 2023 Nature communications 14 3411Google Scholar

    [57]

    Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C, Viola L 2009 Physical Review A—Atomic, Molecular, and Optical Physics 80 052323Google Scholar

    [58]

    Rufeil-Fiori E, Sánchez C M, Oliva F Y, Pastawski H M, Levstein P R 2009 Physical Review A—Atomic, Molecular, and Optical Physics 79 032324Google Scholar

    [59]

    Peng P 2022 NMR studies of quantum thermalization. Ph.D. Dissertation, Massachusetts Institute of Technology

    [60]

    Cappellaro P, Viola L, Ramanathan C 2011 Physical Review A—Atomic, Molecular, and Optical Physics 83 032304Google Scholar

    [61]

    Maletinsky P, Kroner M, Imamoglu A 2009 Nature Physics 5 407Google Scholar

    [62]

    Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J, Roditi I 2015 Phys. Rev. Lett. 114 043604Google Scholar

    [63]

    Greilich A, Kopteva N E, Kamenskii A N, Sokolov P S, Korenev V L, Bayer M 2024 Nature Physics 20 631Google Scholar

    [64]

    Redfield A G 1965 In Advances in Magnetic and Optical Resonance, vol. 1 (Elsevier), pp 1–32

    [65]

    Kowalewski J, Maler L 2017 Nuclear spin relaxation in liquids: theory, experiments, and applications (CRC press

    [66]

    Gasbarri G, Ferialdi L 2018 Physical Review A 98 042111Google Scholar

    [67]

    Wang P, Chen C, Peng X, Wrachtrup J, Liu R B 2019 Physical Review Letters 123 050603Google Scholar

    [68]

    Wu Z, Wang P, Wang T, Li Y, Liu R, Chen Y, Peng X, Liu R B 2024 Physical Review Letters 132 200802Google Scholar

    [69]

    Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H, Onoda S, Isoya J, Liu R B, Wrachtrup J 2022 Nature Communications 13 5318Google Scholar

    [70]

    Cheung B C H, Liu R B 2023 Advanced Quantum Technologies 2300286

    [71]

    Modi K, Cable H, Williamson M, Vedral V 2011 Physical Review X 1 021022

    [72]

    McArthur D, Hahn E, Walstedt R 1969 Physical Review 188 609Google Scholar

    [73]

    Demco D, Tegenfeldt J, Waugh J 1975 Physical Review B 11 4133Google Scholar

    [74]

    Mehring M 2012 Principles of high resolution NMR in solids (Springer Science & Business Media

    [75]

    Kolodziejski W, Klinowski J 2002 Chemical Reviews 102 613Google Scholar

    [76]

    Slichter C, Holton W C 1961 Physical Review 122 1701Google Scholar

    [77]

    Anderson A, Hartmann S 1962 Physical Review 128 2023Google Scholar

    [78]

    Hediger S, Meier B, Kurur N D, Bodenhausen G, Ernst R 1994 Chemical Physics Letters 223 283Google Scholar

    [79]

    Hediger S, Meier B, Ernst R 1995 Chemical Physics Letters 240 449Google Scholar

    [80]

    Levitt M, Suter D, Ernst R 1986 The Journal of chemical physics 84 4243Google Scholar

    [81]

    Kim H, Cross T A, Fu R 2004 Journal of Magnetic Resonance 168 147Google Scholar

    [82]

    Barbara T M, Williams E H 1992 Journal of Magnetic Resonance (1969) 99 439Google Scholar

    [83]

    Hediger S, Meier B, Ernst R 1993 Chemical physics letters 213 627Google Scholar

    [84]

    Fu R, Pelupessy P, Bodenhausen G 1997 Chemical physics letters 264 63Google Scholar

    [85]

    Fu R, Hu J, Cross T A 2004 Journal of Magnetic Resonance 168 8Google Scholar

    [86]

    Overhauser A W 1953 Physical Review 92 411Google Scholar

    [87]

    Abraham M, McCausland M, Robinson F 1959 Physical Review Letters 2 449Google Scholar

    [88]

    Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Van Der Wel P C, Herzfeld J, Temkin R J, et al. 2008 The Journal of chemical physics 128

    [89]

    Eickhoff M, Suter D 2004 Journal of Magnetic Resonance 166 69Google Scholar

    [90]

    Lai C, Maletinsky P, Badolato A, Imamoglu A 2006 Physical Review Letters 96 167403Google Scholar

    [91]

    Tateishi K, Negoro M, Nishida S, Kagawa A, Morita Y, Kitagawa M 2014 Proceedings of the National Academy of Sciences 111 7527Google Scholar

    [92]

    Gao X, Vaidya S, Li K, Ju P, Jiang B, Xu Z, Allcca A E L, Shen K, Taniguchi T, Watanabe K, et al 2022 Nature Materials 21 1024Google Scholar

    [93]

    Millington-Hotze P, Dyte H E, Manna S, Covre da Silva S F, Rastelli A, Chekhovich E A 2024 Nature Communications 15 985Google Scholar

    [94]

    Hautzinger M P, Pan X, Hayden S C, Ye J Y, Jiang Q, Wilson M J, Phillips A J, Dong Y, Raulerson E K, Leahy I A, et al. 2024 Nature 1

    [95]

    Cui J, Li J, Liu X, Peng X, Fu R 2018 Journal of Magnetic Resonance 294 83Google Scholar

    [96]

    Haeberlen U, Waugh J S 1968 Physical Review 175 453Google Scholar

    [97]

    Mori T, Kuwahara T, Saito K 2016 Physical Review Letters 116 120401Google Scholar

    [98]

    Abanin D A, De Roeck W, Ho W W, Huveneers F 2017 Physical Review B 95 014112Google Scholar

    [99]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Physics reports 470 151Google Scholar

    [100]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Advances in Physics 64 139Google Scholar

    [101]

    Suter D, Liu S, Baum J, Pines A 1987 Chemical physics 114 103Google Scholar

    [102]

    Viola L, Knill E, Lloyd S 1999 Physical Review Letters 82 2417Google Scholar

    [103]

    Alvarez G A, Ajoy A, Peng X, Suter D 2010 Physical Review A—Atomic, Molecular, and Optical Physics 82 042306Google Scholar

    [104]

    Yang W, Wang Z Y, Liu R B 2011 Frontiers of Physics in China 6 2

    [105]

    Peng X, Suter D, Lidar D A 2011 Journal of Physics B: Atomic, Molecular and Optical Physics 44 154003Google Scholar

    [106]

    Hahn E L 1950 Physical review 80 580Google Scholar

    [107]

    Carr H Y, Purcell E M 1954 Physical review 94 630Google Scholar

    [108]

    Meiboom S, Gill D 1958 Review of scientific instruments 29 688Google Scholar

    [109]

    Khodjasteh K, Lidar D A 2005 Physical review letters 95 180501Google Scholar

    [110]

    Uhrig G S 2007 Physical Review Letters 98 100504Google Scholar

    [111]

    Rhim W K, Pines A, Waugh J S 1970 Physical Review Letters 25 218Google Scholar

    [112]

    Waugh J S, Huber L M, Haeberlen U 1968 Physical Review Letters 20 180Google Scholar

    [113]

    Cory D, Miller J, Garroway A 1990 Journal of Magnetic Resonance (1969) 90 205Google Scholar

    [114]

    Peng P, Huang X, Yin C, Joseph L, Ramanathan C, Cappellaro P 2022 Physical Review Applied 18 024033Google Scholar

    [115]

    Mehring M, Waugh J S 1972 Physical Review B 5 3459Google Scholar

    [116]

    Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X, Du J 2017 Physical Review X 7 031011

    [117]

    Schleier-Smith M 2017 Nature Physics 13 724Google Scholar

    [118]

    Landsman K A, Figgatt C, Schuster T, Linke N M, Yoshida B, Yao N Y, Monroe C 2019 Nature 567 61Google Scholar

    [119]

    潘健, 余琦, 彭新华 2017 66 33Google Scholar

    [120]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 67 1Google Scholar

    [121]

    薛飞, 杜江峰, 范扬眉, 石名俊, 周先意, 韩荣典, 吴季辉 2002 51 763Google Scholar

    [122]

    Suter D, Pearson J 1988 Chemical physics letters 144 328Google Scholar

    [123]

    van Beek J D, Carravetta M, Antonioli G C, Levitt M H 2005 The Journal of chemical physics 122

    [124]

    Aue W P, Bartholdi E, Ernst R R 1976 The Journal of Chemical Physics 64 2229Google Scholar

    [125]

    Wokaun A, Ernst R R 1977 Chemical Physics Letters 52 407Google Scholar

    [126]

    Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D 1978 In Faraday Symposia of the Chemical Society, vol. 13 (Royal Society of Chemistry), pp 49–55

    [127]

    Bodenhausen G 1980 Progress in Nuclear Magnetic Resonance Spectroscopy 14 137Google Scholar

    [128]

    Yen Y S, Pines A 1983 The Journal of chemical physics 78 3579Google Scholar

    [129]

    Baum J, Munowitz M, Garroway A N, Pines A 1985 The Journal of chemical physics 83 2015Google Scholar

    [130]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Reviews of Modern Physics 91 021001Google Scholar

    [131]

    Turner C J, Michailidis A A, Abanin D A, Serbyn M, Papić Z 2018 Nature Physics 14 745Google Scholar

  • [1] Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of nonreciprocal Aubry-André models. Acta Physica Sinica, doi: 10.7498/aps.71.20220219
    [2] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, doi: 10.7498/aps.71.20220260
    [3] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, doi: 10.7498/aps.71.20221825
    [4] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, doi: 10.7498/aps.71.20220224
    [5] Chen Yang, Zhang Tian-Yang, Guo Guang-Can, Ren Xi-Feng. Research progress of integrated photonic quantum simulation. Acta Physica Sinica, doi: 10.7498/aps.71.20221938
    [6] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, doi: 10.7498/aps.71.20221756
    [7] Li Ting-Wei, Rong Xing, Du Jiang-Feng. Recent progress of quantum control in solid-state single-spin systems. Acta Physica Sinica, doi: 10.7498/aps.71.20211808
    [8] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, doi: 10.7498/aps.70.20210831
    [9] Lu Bo, Wang Da-Jun. Ultracold dipolar molecules. Acta Physica Sinica, doi: 10.7498/aps.68.20182274
    [10] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, doi: 10.7498/aps.68.20190153
    [11] Zhu Yan-Qing, Zhang Dan-Wei, Zhu Shi-Liang. Simulating Dirac, Weyl and Maxwell equations with cold atoms in optical lattices. Acta Physica Sinica, doi: 10.7498/aps.68.20181929
    [12] Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning. Novel superconducting qubits and quantum physics. Acta Physica Sinica, doi: 10.7498/aps.67.20180845
    [13] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, doi: 10.7498/aps.67.20181857
    [14] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, doi: 10.7498/aps.67.20180710
    [15] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, doi: 10.7498/aps.67.20180754
    [16] Pan Jian, Yu Qi, Peng Xin-Hua. Experimental technique for multi-qubit nuclear magnetic resonance system. Acta Physica Sinica, doi: 10.7498/aps.66.150302
    [17] Li Jun, Cui Jiang-Yu, Yang Xiao-Dong, Luo Zhi-Huang, Pan Jian, Yu Qi, Li Zhao-Kai, Peng Xin-Hua, Du Jiang-Feng. Quantum control of nuclear magnetic resonance spin systems. Acta Physica Sinica, doi: 10.7498/aps.64.167601
    [18] Yao Xi-Wei, Zeng Bi-Rong, Liu Qin, Mu Xiao-Yang, Lin Xing-Cheng, Yang Chun, Pan Jian, Chen Zhong. Subspace quantum process tomography via nuclear magnetic resonance. Acta Physica Sinica, doi: 10.7498/aps.59.6837
    [19] Ren Da-Nan, Ren Ren, Xu Jin. An all-proton spin quantum gate in semiconductor spin magnetic resonance force system. Acta Physica Sinica, doi: 10.7498/aps.59.8155
    [20] Li Yong-Fang, Ren Li-Qing, Ma Rui-Qiong, Fan Rong, Liu Juan. Implementing quantum control for the temporal evolution of the wave function of the quantum state by using a phase-controlled light field. Acta Physica Sinica, doi: 10.7498/aps.59.1671
Metrics
  • Abstract views:  208
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Available Online:  12 March 2025

/

返回文章
返回
Baidu
map