搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强相互作用核自旋系统的量子传感

李庆 季云兰 刘然 Dieter Suter 江敏 彭新华

引用本文:
Citation:

基于强相互作用核自旋系统的量子传感

李庆, 季云兰, 刘然, Dieter Suter, 江敏, 彭新华

Quantum Sensing Using Strongly Interacting Spin Systems

Li Qing, Yunlan Ji, Ran Liu, Dieter Suter, Jiang Min, Peng Xinhua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 相互作用量子系统在精密测量领域正受到广泛的关注,尤其是量子关联态的实现以及相互作用系统的动力学研究,为量子资源提供了全新的研究方向,推动了基于相互作用系统的传感技术的深入探索。然而,现有研究主要局限于单一物理量的测量,如何利用相互作用系统实现多物理量的精密测量仍亟待实验验证。本研究基于超低场条件下强相互作用核自旋系统,并结合高灵敏的原子磁力计实现信号读出,成功实现了三维矢量磁场的精密测量,测量精度达到10-11T,方向分辨率高达0.2rad。有效克服了传统方法中因外部参考场引入的校准误差和技术噪声的限制。通过实验上的优化,基于相互作用的传感器在测量精度上实现了五个数量级的提升,为开发超高精度的新型量子传感器开辟了全新的技术路径。
    Quantum Sensing exploits quantum resources of well-controlled quantum systems to measure small signals with high sensitivity, and has great potential for both fundamental science and concrete applications. Interacting quantum systems have attracted growing interest in the field of precision measurement, owing to their potential to generate quantum-correlated states and to exhibit rich many-body dynamics. These features provide a novel avenue for exploiting quantum resources in sensing applications. While previous studies have demonstrated enhanced sensitivity using such systems, they have primarily focused on measuring a single physical quantity. The challenge of realizing simultaneous, high-precision measurements of multiple physical parameters using interacting quantum systems remains largely unexplored in experiments. In this study, we demonstrate a first realisation of interaction-based multiparameter sensing with the use of strongly interacting nuclear spins under ultra-low magnetic field conditions. We find that, as the interaction strength among nuclear spins becomes significantly larger than their Larmor frequencies, a different regime emerges where the strongly interacting spins can be simultaneously sensitive to all components of a multidimensional field, such as a three-dimensional magnetic field. Moreover, we observe that the strong interactions between nuclear spins can increase their quantum coherence times as long as several seconds, leading to enhanced measurement precision. Our sensor successfully achieves precision measurement of three-dimensional vector magnetic fields with a field sensitivity reaching the order of 10$^{-11}$T and an angular resolution as high as 0.2rad. Crucially, this approach eliminates the need for external reference fields, thereby avoiding calibration errors and technical noise commonly encountered in traditional magnetometry. Experimental optimization further boosts the sensitivity of the interacting spin-based sensor by up to five orders of magnitude compared to non-interacting or classical schemes. These results demonstrate the significant potential of interacting spin systems as a powerful platform for high-precision, multi-parameter quantum sensing. The techniques developed here pave the way for a new generation of quantum sensors that leverage intrinsic spin interactions to surpass conventional sensitivity limits, offering a promising route toward ultra-sensitive, calibration-free magnetometry in complex environments.
  • [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5222

    [2]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89035002

    [3]

    Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90035005

    [4]

    Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90035006

    [5]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Adams C, Adams T, Addesso P, Adhikari R, et al. 2013 Nat. Photon. 7613

    [6]

    Budker D, Romalis M 2007 Nat. Phys. 3227

    [7]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90025008

    [8]

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67167601. (in Chinese) [彭世杰, 刘颖, 马文超, 石发展, 杜江峰2018 67167601]

    [9]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349846

    [10]

    Lucchesi L, Chiofalo M L 2019 Phys. Rev. Lett. 123060406

    [11]

    Kong J, Jiménez-Martínez R, Troullinou C, Lucivero V G, Tóth G, Mitchell M W 2020 Nat. Commun. 111

    [12]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 48857

    [13]

    Dooley S, Hanks M, Nakayama S, Munro W J, Nemoto K 2018 NPJ Quant. Inf. 41

    [14]

    Nolan S P, Szigeti S S, Haine S A 2017 Phys. Rev. Lett. 119193601

    [15]

    Zhou H, Choi J, Choi S, Landig R, Douglas A M, Isoya J, Jelezko F, Onoda S, Sumiya H, Cappellaro P, et al. 2020 Phys. Rev. X 10031003

    [16]

    Frérot I, Roscilde T 2018 Phys. Rev. Lett. 121020402

    [17]

    Roy S, Braunstein S L 2008 Phys. Rev. Lett. 100220501

    [18]

    Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R, Mitchell M W 2011 Nature 471486

    [19]

    Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98090401

    [20]

    Chu Y, Zhang S, Yu B, Cai J 2021 Phys. Rev. Lett. 126010502

    [21]

    Rams M M, Sierant P, Dutta O, Horodecki P, Zakrzewski J 2018 Phys. Rev. X 8021022

    [22]

    Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120180603

    [23]

    Kominis I, Kornack T, Allred J, Romalis M V 2003 Nature 422596

    [24]

    Boixo S, Datta A, Davis M J, Flammia S T, Shaji A, Caves C M 2008 Phys. Rev. Lett. 101040403

    [25]

    Li H, Jiang M, Zhu Z N, Xu W J, Xu M X, Peng X H 2019 Acta Phys. Sin. 68160701. (in Chinese) [李辉, 江敏, 朱振南, 徐文杰, 徐�翔, 彭新华2019 68160701]

    [26]

    Zhang Y S, Xu T F 2016 Prog. Geophys 312346. (in Chinese) [张语珊, 许廷发2016地球物理学进展 312346]

    [27]

    Wang X, Zhu M, Xiao K, Guo J, Wang L 2019 J. Magn. Reson. 307106580

    [28]

    Szczykulska M, Baumgratz T, Datta A 2016 Adv. Phys.: X 1621

    [29]

    Vidrighin M D, Donati G, Genoni M G, Jin X M, Kolthammer W S, Kim M, Datta A, Barbieri M, Walmsley I A 2014 Nat. Commun. 51

    [30]

    Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Sci. Adv. 7 eabd2986

    [31]

    Roccia E, Cimini V, Sbroscia M, Gianani I, Ruggiero L, Mancino L, Genoni M G, Ricci M A, Barbieri M 2018 Optica 51171

    [32]

    Hou Z, Zhang Z, Xiang G Y, Li C F, Guo G C, Chen H, Liu L, Yuan H 2020 Phys. Rev. Lett. 125020501

    [33]

    Seltzer S, Romalis M 2004 Appl. Phys. Lett. 854804

    [34]

    Patton B, Zhivun E, Hovde D, Budker D 2014 Phys. Rev. Lett. 113013001

    [35]

    Thiele T, Lin Y, Brown M O, Regal C A 2018 Phys. Rev. Lett. 121153202

    [36]

    Li R, Quan W, Fan W, Xing L, Wang Z, Zhai Y, Fang J 2017 Chin. Phys. B 26120702

    [37]

    Liu J, Yuan H 2017 Phys. Rev. A 96042114

    [38]

    Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 5021

    [39]

    Gross S, Barmet C, Dietrich B E, Brunner D O, Schmid T, Pruessmann K P 2016 Nat. Commun. 71

    [40]

    Genovese M 2016 J. Optics 18073002

    [41]

    Wang N, Jin Y R, Deng H, Wu Y L, Zheng G L, Li S, Ye T, Ren Y F, Chen Y F, Zheng D N 2012 Acta Phys. Sin. 61213302. (in Chinese) [王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁2012 61213302]

    [42]

    Komar P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10582

    [43]

    Donley E A 2010 In SENSORS, 2010 IEEE (IEEE), pp 17–22

    [44]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69629

    [45]

    Kornack T, Ghosh R, Romalis M 2005 Phys. Rev. Lett. 95230801

    [46]

    Hurwitz L, Nelson J 1960 J. Geophys. Research 651759

    [47]

    Wu T, Blanchard J W, Kimball D F J, Jiang M, Budker D 2018 Phys. Rev. Lett. 121023202

    [48]

    Garcon A, Blanchard J W, Centers G P, Figueroa N L, Graham P W, Kimball D F J, Rajendran S, Sushkov A O, Stadnik Y V, Wickenbrock A, et al. 2019 Sci. Adv. 5 eaax4539

    [49]

    Jiang M, Su H, Garcon A, Peng X, Budker D 2021 arXiv preprint arXiv:2102.01448

    [50]

    Farooq M, Chupp T, Grange J, Tewsley-Booth A, Flay D, Kawall D, Sachdeva N, Winter P 2020 Physical review letters 124223001

    [51]

    Adams R W, Aguilar J A, Atkinson K D, Cowley M J, Elliott P I, Duckett S B, Green G G, Khazal I G, López-Serrano J, Williamson D C 2009 Science 3231708

    [52]

    Theis T, Ganssle P, Kervern G, Knappe S, Kitching J, Ledbetter M, Budker D, Pines A 2011 Nat. Phys. 7571

    [53]

    Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, van der Wel P C, Herzfeld J, Temkin R J, et al. 2008 J. Chem. Phys. 12802B611

    [54]

    Spagnolo N, Aparo L, Vitelli C, Crespi A, Ramponi R, Osellame R, Mataloni P, Sciarrino F 2012 Sci. Rep. 21

    [55]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327

    [56]

    Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X, Budker D 2019 Phys. Rev. Appl. 11024005

    [57]

    Tayler M C, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88091101

    [58]

    Jiang M, Xu W, Li Q, Wu Z, Suter D, Peng X 2020 Adv. Quantum Technol. 32000078

    [59]

    Ledbetter M, Theis T, Blanchard J, Ring H, Ganssle P, Appelt S, Blümich B, Pines A, Budker D 2011 Phys. Rev. Lett. 107107601

    [60]

    Appelt S, Häsing F, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B 2010 Phys. Rev. A 81023420

    [61]

    Gemmel C, Heil W, Karpuk S, Lenz K, Ludwig C, Sobolev Y, Tullney K, Burghoff M, Kilian W, Knappe-Grüneberg S, et al. 2010 The European Physical Journal D 57303

    [62]

    Sjolander T F, Tayler M C, King J P, Budker D, Pines A 2016 J. Phys. Chem. A 1204343

    [63]

    Alcicek S, Put P, Kubrak A, Alcicek F C, Barskiy D, Gloeggler S, Dybas J, Pustelny S 2023 Communications chemistry 6165

    [64]

    Picazo-Frutos R, Sheberstov K F, Blanchard J W, Van Dyke E, Reh M, Sjoelander T, Pines A, Budker D, Barskiy D A 2024 Nature Communications 154487

    [65]

    Zeeman P 1897

    [66]

    Condon E U, Condon E, Shortley G 1935 The theory of atomic spectra (Cambridge University Press)

    [67]

    Hou Z, Jin Y, Chen H, Tang J F, Huang C J, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Phys. Rev. Lett. 126070503

    [68]

    Bao G, Wickenbrock A, Rochester S, Zhang W, Budker D 2018 Phys. Rev. Lett. 120033202

    [69]

    Xin-Chang Wang C D H H J S X Y C Z Q T Wen-Long Jiang, Chen Z 2020 Spectrosc. Spectral Anal. 40665. (in Chinese) [王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠2020光谱学与光谱分析40665]

    [70]

    Jiang M, Bian J, Li Q, Wu Z, Su H, Xu M, Wang Y, Wang X, Peng X 2021 Fundamental Research 168

    [71]

    Jiang M, Bian J, Liu X, Wang H, Ji Y, Zhang B, Peng X, Du J 2018 Phys. Rev. A 97062118

    [72]

    Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D, Morton J J 2009 Science 3241166

    [73]

    Bermudez A, Jelezko F, Plenio M B, Retzker A 2011 Phys. Rev. Lett. 107150503

    [74]

    Zhao N, Hu J L, Ho S W, Wan J T, Liu R 2011 Nat. Nanotechnol. 6242

    [75]

    Schweiger A, Jeschke G 2001 Principles of pulse electron paramagnetic resonance (Oxford University Press on Demand)

    [76]

    Xiao D W, Hu W H, Cai Y, Zhao N 2020 Phys. Rev. Lett. 124128101

    [77]

    Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, Yu H, Huang Y, Feng J, Hao J, et al. 2016 Nat. Mater. 15217

  • [1] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统.  , doi: 10.7498/aps.74.20250322
    [2] 刘刚钦. 高压下的色心磁共振和量子传感.  , doi: 10.7498/aps.74.20250224
    [3] 赵立强, 李宇晨, 尹浩川, 张晟昱, 吴泽, 彭新华. 固态核磁共振量子控制及其应用.  , doi: 10.7498/aps.74.20241709
    [4] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术.  , doi: 10.7498/aps.72.20221582
    [5] 刘刚钦. 极端条件下的金刚石自旋量子传感.  , doi: 10.7498/aps.71.20212072
    [6] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展.  , doi: 10.7498/aps.70.20210684
    [7] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法.  , doi: 10.7498/aps.67.20171464
    [8] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控.  , doi: 10.7498/aps.67.20180755
    [9] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展.  , doi: 10.7498/aps.67.20180754
    [10] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术.  , doi: 10.7498/aps.66.150302
    [11] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演.  , doi: 10.7498/aps.65.107601
    [12] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究.  , doi: 10.7498/aps.64.229301
    [13] 凌宏胜, 田佳欣, 周淑娜, 魏达秀. Ising耦合体系中量子傅里叶变换的优化.  , doi: 10.7498/aps.64.170301
    [14] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为.  , doi: 10.7498/aps.64.217404
    [15] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制.  , doi: 10.7498/aps.64.167601
    [16] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度.  , doi: 10.7498/aps.62.147602
    [17] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构.  , doi: 10.7498/aps.59.6837
    [18] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究.  , doi: 10.7498/aps.58.5744
    [19] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演.  , doi: 10.7498/aps.57.5956
    [20] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法.  , doi: 10.7498/aps.54.1431
计量
  • 文章访问数:  73
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-23

/

返回文章
返回
Baidu
map