-
Fermions are basic building blocks in the standard model. Interactions among these elementary particles determine how they assemble and consequently form various states of matter in our nature. Simulating fermionic degrees of freedom is also a central problem in condensed matter physics and quantum chemistry, which is crucial to understanding high-temperature superconductivity, quantum magnetism and molecular structure and functionality. However, simulating interacting fermions by classical computing generically face the minus sign problem, encountering the exponential computation complexity. Ultracold atoms provide an ideal experimental platform for quantum simulation of interacting fermions. This highly-controllable system enables the realizing of nontrivial fermionic models, by which the physical properties of the models can be obtained by measurements in experiment. This deepens our understanding of related physical mechanisms and helps determine the key parameters. In recent years, there have been versatile experimental studies on quantum ground state physics, finite temperature thermal equilibrium, and quantum many-body dynamics, in fermionic quantum simulation systems. Quantum simulation offers an access to the physical problems that are intractable on the classical computer, including studying macroscopic quantum phenomena and microscopic physical mechanisms, which demonstrates the quantum advantages of controllable quantum systems. This paper briefly introduces the model of interacting fermions describing the quantum states of matter in such a system. Then we discuss various states of matter, which can arise in interacting fermionic quantum systems, including Cooper pair superfluids and density-wave orders. These exotic quantum states play important roles in describing high-temperature superconductivity and quantum magnetism, but their simulations on the classical computers have exponentially computational cost. Related researches on quantum simulation of interacting fermions in determining the phase diagrams and equation of states reflect the quantum advantage of such systems.
-
Keywords:
- quantum simulation /
- interacting fermions /
- cold atoms /
- optical lattice
[1] Giorgini S, Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215
Google Scholar
[2] McArdle S, Endo S, Aspuru-Guzik A, Benjamin S C, Yuan X 2020 Rev. Mod. Phys. 92 015003
Google Scholar
[3] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I, Gross C 2016 Science 353 1257
Google Scholar
[4] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462
Google Scholar
[5] Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P, Bakr W S 2018 Nat. Phys. 14 173
Google Scholar
[6] Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Hébert C D, Bergeron S, Tremblay A M S, Kokalj J, Huse D A, Schauß P, Bakr W S 2019 Science 363 379
Google Scholar
[7] Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842
Google Scholar
[8] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256
Google Scholar
[9] Sommer A, Ku M, Roati G, Zwierlein M W 2011 Nature 472 201
Google Scholar
[10] Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T, Thomas J E 2011 Science 331 58
Google Scholar
[11] Krinner S, Lebrat M, Husmann D, Grenier C, Brantut J P, Esslinger T 2016 PNAS 113 8144
Google Scholar
[12] Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528
Google Scholar
[13] Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R, Pollmann F, Salomon G, Gross C, Hilker T A, Bloch I 2022 Nature 606 484
Google Scholar
[14] Qiu X Z, Zou J, Qi X D, Li X P 2020 NPJ Quantum Inf. 6 1
Google Scholar
[15] Li X P, Liu W V 2016 Rep. Prog. Phys. 79 116401
Google Scholar
[16] Weinberg S 1994 Nucl. Phys. B 413 567
Google Scholar
[17] Qin M P, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R, Zhang S W 2020 Phys. Rev. X 10 031016
Google Scholar
[18] Jiang H C, Devereaux T P 2019 Science 365 1424
Google Scholar
[19] Guardado-Sanchez E, Spar B M, Schauss P, Belyansky R, Young J T, Bienias P, Gorshkov A V, Iadecola T, Bakr W S 2021 Phys. Rev. X 11 021036
Google Scholar
[20] Li X P 2021 Physics 17 74
[21] Venu V, Xu P H, Mamaev M, Corapi F, Bilitewski T, D'Incao J P, Fujiwara C J, Rey A M, Thywissen J H 2022 arXiv: 2205.13506
[22] Li X P, Sarma, S D 2015 Nat. Commun. 6 1
[23] Liu X P, Yao X C, Deng Y J, Wang X Q, Wang Y X, Huang C J, Li X P, Chen Y A, Pan J W 2021 Phys. Rev. Lett. 126 185302
Google Scholar
[24] Ko B, Park J W, Shin Y I 2019 Nat. Phys. 15 1227
Google Scholar
[25] Liu X P, Yao X C, Li X P, Wang Y X, Huang C J, Deng Y J, Chen Y A, Pan J W 2022 Phys. Rev. Lett. 129 163602
Google Scholar
[26] Chesler P M, García-García A M, Liu H 2015 Phys. Rev. X 5 021015
Google Scholar
[27] Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359
Google Scholar
[28] Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A 2021 Phys. Rev. Lett. 127 033201
Google Scholar
[29] Bravyi S B, Kitaev A Y 2002 Ann. Phys. 298 210
Google Scholar
[30] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667
Google Scholar
-
[1] Giorgini S, Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215
Google Scholar
[2] McArdle S, Endo S, Aspuru-Guzik A, Benjamin S C, Yuan X 2020 Rev. Mod. Phys. 92 015003
Google Scholar
[3] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I, Gross C 2016 Science 353 1257
Google Scholar
[4] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462
Google Scholar
[5] Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P, Bakr W S 2018 Nat. Phys. 14 173
Google Scholar
[6] Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Hébert C D, Bergeron S, Tremblay A M S, Kokalj J, Huse D A, Schauß P, Bakr W S 2019 Science 363 379
Google Scholar
[7] Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842
Google Scholar
[8] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256
Google Scholar
[9] Sommer A, Ku M, Roati G, Zwierlein M W 2011 Nature 472 201
Google Scholar
[10] Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T, Thomas J E 2011 Science 331 58
Google Scholar
[11] Krinner S, Lebrat M, Husmann D, Grenier C, Brantut J P, Esslinger T 2016 PNAS 113 8144
Google Scholar
[12] Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528
Google Scholar
[13] Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R, Pollmann F, Salomon G, Gross C, Hilker T A, Bloch I 2022 Nature 606 484
Google Scholar
[14] Qiu X Z, Zou J, Qi X D, Li X P 2020 NPJ Quantum Inf. 6 1
Google Scholar
[15] Li X P, Liu W V 2016 Rep. Prog. Phys. 79 116401
Google Scholar
[16] Weinberg S 1994 Nucl. Phys. B 413 567
Google Scholar
[17] Qin M P, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R, Zhang S W 2020 Phys. Rev. X 10 031016
Google Scholar
[18] Jiang H C, Devereaux T P 2019 Science 365 1424
Google Scholar
[19] Guardado-Sanchez E, Spar B M, Schauss P, Belyansky R, Young J T, Bienias P, Gorshkov A V, Iadecola T, Bakr W S 2021 Phys. Rev. X 11 021036
Google Scholar
[20] Li X P 2021 Physics 17 74
[21] Venu V, Xu P H, Mamaev M, Corapi F, Bilitewski T, D'Incao J P, Fujiwara C J, Rey A M, Thywissen J H 2022 arXiv: 2205.13506
[22] Li X P, Sarma, S D 2015 Nat. Commun. 6 1
[23] Liu X P, Yao X C, Deng Y J, Wang X Q, Wang Y X, Huang C J, Li X P, Chen Y A, Pan J W 2021 Phys. Rev. Lett. 126 185302
Google Scholar
[24] Ko B, Park J W, Shin Y I 2019 Nat. Phys. 15 1227
Google Scholar
[25] Liu X P, Yao X C, Li X P, Wang Y X, Huang C J, Deng Y J, Chen Y A, Pan J W 2022 Phys. Rev. Lett. 129 163602
Google Scholar
[26] Chesler P M, García-García A M, Liu H 2015 Phys. Rev. X 5 021015
Google Scholar
[27] Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359
Google Scholar
[28] Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A 2021 Phys. Rev. Lett. 127 033201
Google Scholar
[29] Bravyi S B, Kitaev A Y 2002 Ann. Phys. 298 210
Google Scholar
[30] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667
Google Scholar
Catalog
Metrics
- Abstract views: 5446
- PDF Downloads: 197
- Cited By: 0