Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum Sensing Using Strongly Interacting Spin Systems

Li Qing Yunlan Ji Ran Liu Dieter Suter Jiang Min Peng Xinhua

Citation:

Quantum Sensing Using Strongly Interacting Spin Systems

Li Qing, Yunlan Ji, Ran Liu, Dieter Suter, Jiang Min, Peng Xinhua
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Quantum Sensing exploits quantum resources of well-controlled quantum systems to measure small signals with high sensitivity, and has great potential for both fundamental science and concrete applications. Interacting quantum systems have attracted growing interest in the field of precision measurement, owing to their potential to generate quantum-correlated states and to exhibit rich many-body dynamics. These features provide a novel avenue for exploiting quantum resources in sensing applications. While previous studies have demonstrated enhanced sensitivity using such systems, they have primarily focused on measuring a single physical quantity. The challenge of realizing simultaneous, high-precision measurements of multiple physical parameters using interacting quantum systems remains largely unexplored in experiments. In this study, we demonstrate a first realisation of interaction-based multiparameter sensing with the use of strongly interacting nuclear spins under ultra-low magnetic field conditions. We find that, as the interaction strength among nuclear spins becomes significantly larger than their Larmor frequencies, a different regime emerges where the strongly interacting spins can be simultaneously sensitive to all components of a multidimensional field, such as a three-dimensional magnetic field. Moreover, we observe that the strong interactions between nuclear spins can increase their quantum coherence times as long as several seconds, leading to enhanced measurement precision. Our sensor successfully achieves precision measurement of three-dimensional vector magnetic fields with a field sensitivity reaching the order of 10$^{-11}$T and an angular resolution as high as 0.2rad. Crucially, this approach eliminates the need for external reference fields, thereby avoiding calibration errors and technical noise commonly encountered in traditional magnetometry. Experimental optimization further boosts the sensitivity of the interacting spin-based sensor by up to five orders of magnitude compared to non-interacting or classical schemes. These results demonstrate the significant potential of interacting spin systems as a powerful platform for high-precision, multi-parameter quantum sensing. The techniques developed here pave the way for a new generation of quantum sensors that leverage intrinsic spin interactions to surpass conventional sensitivity limits, offering a promising route toward ultra-sensitive, calibration-free magnetometry in complex environments.
  • [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5222

    [2]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89035002

    [3]

    Pezze L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90035005

    [4]

    Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W, Pirandola S 2018 Rev. Mod. Phys. 90035006

    [5]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Adams C, Adams T, Addesso P, Adhikari R, et al. 2013 Nat. Photon. 7613

    [6]

    Budker D, Romalis M 2007 Nat. Phys. 3227

    [7]

    Safronova M, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90025008

    [8]

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67167601. (in Chinese) [彭世杰, 刘颖, 马文超, 石发展, 杜江峰2018 67167601]

    [9]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349846

    [10]

    Lucchesi L, Chiofalo M L 2019 Phys. Rev. Lett. 123060406

    [11]

    Kong J, Jiménez-Martínez R, Troullinou C, Lucivero V G, Tóth G, Mitchell M W 2020 Nat. Commun. 111

    [12]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 48857

    [13]

    Dooley S, Hanks M, Nakayama S, Munro W J, Nemoto K 2018 NPJ Quant. Inf. 41

    [14]

    Nolan S P, Szigeti S S, Haine S A 2017 Phys. Rev. Lett. 119193601

    [15]

    Zhou H, Choi J, Choi S, Landig R, Douglas A M, Isoya J, Jelezko F, Onoda S, Sumiya H, Cappellaro P, et al. 2020 Phys. Rev. X 10031003

    [16]

    Frérot I, Roscilde T 2018 Phys. Rev. Lett. 121020402

    [17]

    Roy S, Braunstein S L 2008 Phys. Rev. Lett. 100220501

    [18]

    Napolitano M, Koschorreck M, Dubost B, Behbood N, Sewell R, Mitchell M W 2011 Nature 471486

    [19]

    Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98090401

    [20]

    Chu Y, Zhang S, Yu B, Cai J 2021 Phys. Rev. Lett. 126010502

    [21]

    Rams M M, Sierant P, Dutta O, Horodecki P, Zakrzewski J 2018 Phys. Rev. X 8021022

    [22]

    Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120180603

    [23]

    Kominis I, Kornack T, Allred J, Romalis M V 2003 Nature 422596

    [24]

    Boixo S, Datta A, Davis M J, Flammia S T, Shaji A, Caves C M 2008 Phys. Rev. Lett. 101040403

    [25]

    Li H, Jiang M, Zhu Z N, Xu W J, Xu M X, Peng X H 2019 Acta Phys. Sin. 68160701. (in Chinese) [李辉, 江敏, 朱振南, 徐文杰, 徐�翔, 彭新华2019 68160701]

    [26]

    Zhang Y S, Xu T F 2016 Prog. Geophys 312346. (in Chinese) [张语珊, 许廷发2016地球物理学进展 312346]

    [27]

    Wang X, Zhu M, Xiao K, Guo J, Wang L 2019 J. Magn. Reson. 307106580

    [28]

    Szczykulska M, Baumgratz T, Datta A 2016 Adv. Phys.: X 1621

    [29]

    Vidrighin M D, Donati G, Genoni M G, Jin X M, Kolthammer W S, Kim M, Datta A, Barbieri M, Walmsley I A 2014 Nat. Commun. 51

    [30]

    Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Sci. Adv. 7 eabd2986

    [31]

    Roccia E, Cimini V, Sbroscia M, Gianani I, Ruggiero L, Mancino L, Genoni M G, Ricci M A, Barbieri M 2018 Optica 51171

    [32]

    Hou Z, Zhang Z, Xiang G Y, Li C F, Guo G C, Chen H, Liu L, Yuan H 2020 Phys. Rev. Lett. 125020501

    [33]

    Seltzer S, Romalis M 2004 Appl. Phys. Lett. 854804

    [34]

    Patton B, Zhivun E, Hovde D, Budker D 2014 Phys. Rev. Lett. 113013001

    [35]

    Thiele T, Lin Y, Brown M O, Regal C A 2018 Phys. Rev. Lett. 121153202

    [36]

    Li R, Quan W, Fan W, Xing L, Wang Z, Zhai Y, Fang J 2017 Chin. Phys. B 26120702

    [37]

    Liu J, Yuan H 2017 Phys. Rev. A 96042114

    [38]

    Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 5021

    [39]

    Gross S, Barmet C, Dietrich B E, Brunner D O, Schmid T, Pruessmann K P 2016 Nat. Commun. 71

    [40]

    Genovese M 2016 J. Optics 18073002

    [41]

    Wang N, Jin Y R, Deng H, Wu Y L, Zheng G L, Li S, Ye T, Ren Y F, Chen Y F, Zheng D N 2012 Acta Phys. Sin. 61213302. (in Chinese) [王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁2012 61213302]

    [42]

    Komar P, Kessler E M, Bishof M, Jiang L, Sørensen A S, Ye J, Lukin M D 2014 Nat. Phys. 10582

    [43]

    Donley E A 2010 In SENSORS, 2010 IEEE (IEEE), pp 17–22

    [44]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69629

    [45]

    Kornack T, Ghosh R, Romalis M 2005 Phys. Rev. Lett. 95230801

    [46]

    Hurwitz L, Nelson J 1960 J. Geophys. Research 651759

    [47]

    Wu T, Blanchard J W, Kimball D F J, Jiang M, Budker D 2018 Phys. Rev. Lett. 121023202

    [48]

    Garcon A, Blanchard J W, Centers G P, Figueroa N L, Graham P W, Kimball D F J, Rajendran S, Sushkov A O, Stadnik Y V, Wickenbrock A, et al. 2019 Sci. Adv. 5 eaax4539

    [49]

    Jiang M, Su H, Garcon A, Peng X, Budker D 2021 arXiv preprint arXiv:2102.01448

    [50]

    Farooq M, Chupp T, Grange J, Tewsley-Booth A, Flay D, Kawall D, Sachdeva N, Winter P 2020 Physical review letters 124223001

    [51]

    Adams R W, Aguilar J A, Atkinson K D, Cowley M J, Elliott P I, Duckett S B, Green G G, Khazal I G, López-Serrano J, Williamson D C 2009 Science 3231708

    [52]

    Theis T, Ganssle P, Kervern G, Knappe S, Kitching J, Ledbetter M, Budker D, Pines A 2011 Nat. Phys. 7571

    [53]

    Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, van der Wel P C, Herzfeld J, Temkin R J, et al. 2008 J. Chem. Phys. 12802B611

    [54]

    Spagnolo N, Aparo L, Vitelli C, Crespi A, Ramponi R, Osellame R, Mataloni P, Sciarrino F 2012 Sci. Rep. 21

    [55]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327

    [56]

    Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X, Budker D 2019 Phys. Rev. Appl. 11024005

    [57]

    Tayler M C, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88091101

    [58]

    Jiang M, Xu W, Li Q, Wu Z, Suter D, Peng X 2020 Adv. Quantum Technol. 32000078

    [59]

    Ledbetter M, Theis T, Blanchard J, Ring H, Ganssle P, Appelt S, Blümich B, Pines A, Budker D 2011 Phys. Rev. Lett. 107107601

    [60]

    Appelt S, Häsing F, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B 2010 Phys. Rev. A 81023420

    [61]

    Gemmel C, Heil W, Karpuk S, Lenz K, Ludwig C, Sobolev Y, Tullney K, Burghoff M, Kilian W, Knappe-Grüneberg S, et al. 2010 The European Physical Journal D 57303

    [62]

    Sjolander T F, Tayler M C, King J P, Budker D, Pines A 2016 J. Phys. Chem. A 1204343

    [63]

    Alcicek S, Put P, Kubrak A, Alcicek F C, Barskiy D, Gloeggler S, Dybas J, Pustelny S 2023 Communications chemistry 6165

    [64]

    Picazo-Frutos R, Sheberstov K F, Blanchard J W, Van Dyke E, Reh M, Sjoelander T, Pines A, Budker D, Barskiy D A 2024 Nature Communications 154487

    [65]

    Zeeman P 1897

    [66]

    Condon E U, Condon E, Shortley G 1935 The theory of atomic spectra (Cambridge University Press)

    [67]

    Hou Z, Jin Y, Chen H, Tang J F, Huang C J, Yuan H, Xiang G Y, Li C F, Guo G C 2021 Phys. Rev. Lett. 126070503

    [68]

    Bao G, Wickenbrock A, Rochester S, Zhang W, Budker D 2018 Phys. Rev. Lett. 120033202

    [69]

    Xin-Chang Wang C D H H J S X Y C Z Q T Wen-Long Jiang, Chen Z 2020 Spectrosc. Spectral Anal. 40665. (in Chinese) [王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠2020光谱学与光谱分析40665]

    [70]

    Jiang M, Bian J, Li Q, Wu Z, Su H, Xu M, Wang Y, Wang X, Peng X 2021 Fundamental Research 168

    [71]

    Jiang M, Bian J, Liu X, Wang H, Ji Y, Zhang B, Peng X, Du J 2018 Phys. Rev. A 97062118

    [72]

    Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D, Morton J J 2009 Science 3241166

    [73]

    Bermudez A, Jelezko F, Plenio M B, Retzker A 2011 Phys. Rev. Lett. 107150503

    [74]

    Zhao N, Hu J L, Ho S W, Wan J T, Liu R 2011 Nat. Nanotechnol. 6242

    [75]

    Schweiger A, Jeschke G 2001 Principles of pulse electron paramagnetic resonance (Oxford University Press on Demand)

    [76]

    Xiao D W, Hu W H, Cai Y, Zhao N 2020 Phys. Rev. Lett. 124128101

    [77]

    Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, Yu H, Huang Y, Feng J, Hao J, et al. 2016 Nat. Mater. 15217

  • [1] XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin. Research Progress on Artificial Intelligence Empowered Quantum Communication and Quantum Sensing Systems. Acta Physica Sinica, doi: 10.7498/aps.74.20250322
    [2] Liu Gang-Qin. Magnetic resonance and quantum sensing with color centers under high pressures. Acta Physica Sinica, doi: 10.7498/aps.74.20250224
    [3] ZHAO Liqiang, LI Yuchen, YIN Haochuan, ZHANG Shengyu, WU Ze, PENG Xinhua. Quantum control based on solid-state nuclear magnetic resonance and its applications. Acta Physica Sinica, doi: 10.7498/aps.74.20241709
    [4] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, doi: 10.7498/aps.72.20221582
    [5] Liu Gang-Qin. Diamond spin quantum sensing under extreme conditions. Acta Physica Sinica, doi: 10.7498/aps.71.20212072
    [6] Tian Yu, Lin Zi-Dong, Wang Xiang-Yu, Che Liang-Yu, Lu Da-Wei. Experimental progress of quantum machine learning based on spin systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210684
    [7] Jiang Chuan-Dong, Wang Qi, Du Guan-Feng, Yi Xiao-Feng, Tian Bao-Feng. Characteristics of surface nuclear magnetic off-resonance signal and complex envelope inversion. Acta Physica Sinica, doi: 10.7498/aps.67.20171464
    [8] Liu Gang-Qin, Xing Jian, Pan Xin-Yu. Quantum control of nitrogen-vacancy center in diamond. Acta Physica Sinica, doi: 10.7498/aps.67.20180755
    [9] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, doi: 10.7498/aps.67.20180754
    [10] Pan Jian, Yu Qi, Peng Xin-Hua. Experimental technique for multi-qubit nuclear magnetic resonance system. Acta Physica Sinica, doi: 10.7498/aps.66.150302
    [11] Wu Liang, Chen Fang, Huang Chong-Yang, Ding Guo-Hui, Ding Yi-Ming. Multi-exponential inversion of T2 spectrum in NMR based on improved nonlinear fitting. Acta Physica Sinica, doi: 10.7498/aps.65.107601
    [12] Tian Bao-Feng, Zhou Yuan-Yuan, Wang Yue, Li Zhen-Yu, Yi Xiao-Feng. Noise cancellation method for full-wave magnetic resonance sounding signal based on independent component analysis. Acta Physica Sinica, doi: 10.7498/aps.64.229301
    [13] Ling Hong-Sheng, Tian Jia-Xin, Zhou Shu-Na, Wei Da-Xiu. Time-optimized quantum QFT gate in an Ising coupling system. Acta Physica Sinica, doi: 10.7498/aps.64.170301
    [14] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.64.217404
    [15] Li Jun, Cui Jiang-Yu, Yang Xiao-Dong, Luo Zhi-Huang, Pan Jian, Yu Qi, Li Zhao-Kai, Peng Xin-Hua, Du Jiang-Feng. Quantum control of nuclear magnetic resonance spin systems. Acta Physica Sinica, doi: 10.7498/aps.64.167601
    [16] Li Xin, Xiao Li-Zhi, Liu Hua-Bing, Zhang Zong-Fu, Guo Bao-Xin, Yu Hui-Jun, Zong Fang-Rong. Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field. Acta Physica Sinica, doi: 10.7498/aps.62.147602
    [17] Yao Xi-Wei, Zeng Bi-Rong, Liu Qin, Mu Xiao-Yang, Lin Xing-Cheng, Yang Chun, Pan Jian, Chen Zhong. Subspace quantum process tomography via nuclear magnetic resonance. Acta Physica Sinica, doi: 10.7498/aps.59.6837
    [18] Li Shao, Ren Yu-Feng, Wang Ning, Tian Ye, Chu Hai-Feng, Li Song-Lin, Chen Ying-Fei, Li Jie, Chen Geng-Hua, Zheng Dong-Ning. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-superconducting quantum interference device. Acta Physica Sinica, doi: 10.7498/aps.58.5744
    [19] Pan Ke-Jia, Chen Hua, Tan Yong-Ji. Multi-exponential inversion of T2 spectrum in NMR based on differential evolution algorithm. Acta Physica Sinica, doi: 10.7498/aps.57.5956
    [20] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, doi: 10.7498/aps.54.1431
Metrics
  • Abstract views:  72
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  23 April 2025

/

返回文章
返回
Baidu
map