-
Magnetic resonance imaging (MRI) is one of the most important imaging modalities used in contemporary clinical radiology research and diagnostic practice due to its non-invasive nature, absence of ionizing radiation, high soft tissue contrast, and diverse imaging capabilities. Nevertheless, traditional MRI systems are limited by a relatively low signal-to-noise ratio (SNR), which can be enhanced by increasing the strength of the main magnetic field. Ultra-high field MRI (UHF-MRI) typically refers to MRI systems with a main magnetic field strength of 7 T or higher. The UHF-MRI improves image SNR and extends the boundaries of spatial resolution and detection sensitivity. These advancements not only provide clinicians with richer and more accurate physiological and pathological information but also open new avenues for research on life sciences and cognitive neuroscience. Currently, the UHF-MRI plays a pivotal role in brain functional and metabolic imaging. In the brain function research, the implementation of high-resolution mesoscale functional imaging techniques has enabled the investigation of laminar-specific neuronal activity within cortical layers, including feedforward and feedback neural information processing pathways. In metabolic studies, the application of hydrogen and multi-nuclear spectroscopy and imaging has yielded more accurate metabolic data, thereby holding substantial promise for advancing our understanding of the pathophysiology underlying functional and metabolic diseases. However, the UHF-MRI is also subject to certain limitations, including issues related to radio-frequency (RF) field in homogeneity, elevated specific absorption ratio (SAR), and susceptibility artifacts. In this paper, the historical evolution and theoretical underpinnings of UHF-MRI are reviewed, its principal advantages over low-field MRI is elucidated, and the contemporary research on UHF-MRI applications in human brain function and metabolic imaging research are integrated together. Furthermore, the technical limitations associated with UHF-MRI implementation are critically examined and the potential avenues are proposed for the future research direction. -
图 1 不同场强(3 T与7 T)下的${T_1}$加权成像与二维EPI图像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号分别为西门子MAGNETOM Prisma 3 T和西门子MAGNETOM Terra 7 T, 受试者为同一位健康成年男性 (a) 3 T在1 mm×1 mm×1 mm分辨率下的磁化强度准备快速梯度回波(magnetization prepared rapid gradient echo, MPRAGE)图像(重复时间(repetition time, TR)= 2530 ms, 回波时间(echo time, TE)= 2.98 ms, 反转时间(inversion time, TI)= 1100 ms, 采集时间(acquisition time, TA)= 5∶56); (b) 7 T在0.65 mm各向同性分辨率下的磁化强度准备双快速梯度回波(magnetization prepared 2 rapid gradient echo, MP2 RAGE)图像(TR = 5000 ms, TE = 2.05 ms, TI1/TI2 = 900/2750 ms, TA = 10∶57); (c) 3 T在2 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 30 ms, 翻转角(flip angle, FA)= 90°, 回波间隙(echo spacing, ES)= 0.54 ms); (d) 7 T在2 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 22 ms, FA = 90°, ES = 0.53 ms); (e) 7 T在0.85 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 27 ms, FA = 70°, ES = 1.08 ms)
Figure 1. Comparison of ${T_1}$-weighted images and 2D-EPI on different magnetic fields (3 T vs. 7 T), images were acquired from the same healthy male adult volunteer on MAGNETOM Prisma 3 T and MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) 3 T MPRAGE image at 1 mm×1 mm×1 mm resolution (TR = 2530 ms, TE = 2.98 ms, TI = 1100 ms, TA = 5∶56); (b) 7 T MP2 RAGE image at 0.65 mm isotropic resolution (TR = 5000 ms, TE = 2.05 ms, TI1/TI2 = 900/2750 ms, TA = 10∶57); (c) 3 T 2D-EPI images at 2 mm isotropic resolution (TR = 2000 ms, TE = 30 ms, FA = 90°, ES = 0.54 ms); (d) 7 T 2D-EPI images at 2 mm isotropic resolution (TR = 2000 ms, TE = 22 ms, FA = 90°, ES = 0.53 ms); (e) 7 T 2D-EPI images at 0.85 mm isotropic resolution (TR = 2000 ms, TE = 27 ms, FA = 70°, ES = 1.08 ms).
图 2 7 T大脑动脉和静脉血管结构成像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性 (a) TOF成像在横断面的最大值投影(0.2 mm×0.2 mm×0.4 mm插值重建, TR = 35 ms, TE = 3.78 ms, TA = 13:54); (b) SWI成像在横断面的最小值投影(0.12 mm×0.12 mm×1.5 mm插值重建, TR = 21 ms, TE = 14 ms, TA = 7∶27)
Figure 2. 7 T brain arteries and veins structure imaging. Images were acquired from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) Maximum intensity projection on transversal TOF image (0.2 mm×0.2 mm×0.4 mm interpolated reconstruction, TR = 35 ms, TE = 3.78 ms, TA = 13:54); (b) minimum intensity projection on transversal SWI image (0.12 mm×0.12 mm×1.5 mm interpolated reconstruction, TR = 21 ms, TE = 14 ms, TA = 7∶27).
图 3 手指运动任务的7 T脑功能成像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性, 使用VASO序列[50](0.8 mm×0.8 mm×1.3 mm, TR1/TR2 = 69/4419 ms, TE = 25.4 ms, FA = 45°, ES = 1.1 ms) (a) VASO图像激活图; (b) BOLD图像激活图; (c) 皮层分层感兴趣区(region of interest, ROI); (d) 皮层分层激活分布(信号相对变化)与皮层深度的关系, 灰质(gray matter, GM)最浅处边界为脑脊液(cerebral spinal fluid, CSF), 最深处边界为白质(white matter, WM), 蓝色曲线为BOLD激活分布, 红色曲线为VASO激活分布, 曲线中的误差棒为每个分层ROI的统计样本标准差
Figure 3. 7 T fMRI on finger-tapping task. VASO sequence[50] (0.8 mm×0.8 mm×1.3 mm, TR1/TR2 = 69/4419 ms, TE = 25.4 ms, FA = 45°, ES = 1.1 ms) was implemented from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) VASO activation; (b) BOLD activation; (c) layer ROI; (d) laminar profile of percent signal change activation for BOLD (blue) and VASO (red), the error bars represent the sample standard deviation within each layer.
图 4 后扣带回皮质(posterior cingulate cortex, PCC)的7 T 1H-MRS, 数据采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年女性, 使用semi-LASER序列[158](20 mm×20 mm×20 mm, TR = 5000 ms, TE1/TE2/TE3 = 7/10/9 ms, FA = 45°, 平均次数(Averages) = 64) (a) PCC体素位置; (b) 7 T PCC 1H-MRS及一些代谢物谱峰分布
Figure 4. In vivo 1H-MRS on PCC using semi-LASER sequence (20 mm×20 mm×20 mm, TR = 5000 ms, TE1/TE2/TE3 = 7/10/9 ms, FA = 45°, Averages = 64) from a healthy female adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) PCC voxel location; (b) 7 T PCC 1H-MRS and metabolites.
图 5 人脑7 T 23Na磁共振成像(图像由中国科学院生物物理研究所提供, 扫描仪型号为西门子MAGNETOM Terra 7 T, 使用苏州众志医疗公司提供的23Na-1H双频头部线圈, 受试者为健康成年男性), 使用超短回波(UTE, ultra-short TE)序列(2.5 mm×2.5 mm×2.5 mm, TR = 12.8 ms, TE = 0.27 ms, FA = 19°, TA = 4∶25) (a) 矢状面; (b) 冠状面; (c) 横断面
Figure 5. In vivo 23Na MRI of human brain at 7 T, UTE sequence (2.5 mm×2.5 mm×2.5 mm, TR = 12.8 ms, TE = 0.27 ms, FA = 19°, TA = 4∶25) was implemented from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany): (a) Sagittal; (b) coronal; (c) axial, images courtesy of Institute of Biophysics, Chinese Academy of Sciences.
图 6 7 T MRI射频场在圆极化(circular polarized, CP)模式下人脑成像的FA分布图(数据采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性)
Figure 6. FA map covering the brain on the 7 T scanner in CP mode, images were acquired from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University.
-
[1] Uǧurbil K 2014 IEEE Trans. Biomed. Eng. 61 1364
Google Scholar
[2] Lauterbur P C 1973 Nature 242 5394
[3] Bomsdorf H, Helzel T, Kunz D, Röschmann P, Tschendel O, Wieland J 1988 NMR Biomed. 1 151
Google Scholar
[4] Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R 1990 NMR Biomed. 3 31
Google Scholar
[5] Bomsdorf H, Röschmann P, Wieland J 1991 Magn. Reson. Med. 22 10
Google Scholar
[6] Uǧurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim S G, Menon R, Merkle H, Ogawa S 1993 Magn. Reson. Q. 9 259
[7] Ogawa S, Tank D W, Menon R, Ellermann J M, Kim S G, Merkle H, Uǧurbil K 1992 Proc. Natl. Acad. Sci. 89 5951
Google Scholar
[8] Robitaille P M L, Abduljalil A M, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres D M, Spigos D 1998 NMR Biomed. 11 263
Google Scholar
[9] Robitaille P M L, Abduljalil A M, Kangarlu A 2000 J. Comput. Assist. Tomogr. 24 2
Google Scholar
[10] Vaughan J T, Garwood M, Collins C M, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith M B, Uǧurbil K 2001 Magn. Reson. Med. 46 24
Google Scholar
[11] Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele P F, Adriany G, Andersen P, Vaughan J T, Merkle H, Uǧurbil K, Hu X 2001 Magn. Reson. Med. 45 588
Google Scholar
[12] Feinberg D A, Beckett A J S, Vu A T, Stockmann J, Huber L, Ma S, Ahn S, Setsompop K, Cao X, Park S, Liu C, Wald L L, Polimeni J R, Mareyam A, Gruber B, Stirnberg R, Liao C, Yacoub E, Davids M, Bell P, Rummert E, Koehler M, Potthast A, Gonzalez-Insua I, Stocker S, Gunamony S, Dietz P 2023 Nat. Methods 20 2048
Google Scholar
[13] Thulborn K R 2006 Ultra High Field Magnetic Resonance Imaging (Boston, MA: Springer US) pp105—126
[14] Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, Van De Moortele P F, Garwood M, Uǧurbil K 2006 Magn. Reson. Med. 56 1274
Google Scholar
[15] Ivanov D, De Martino F, Formisano E, Fritz F J, Goebel R, Huber L, Kashyap S, Kemper V G, Kurban D, Roebroeck A, Sengupta S, Sorger B, Tse D H Y, Uludaǧ K, Wiggins C J, Poser B A 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 159
Google Scholar
[16] Atkinson I C, Renteria L, Burd H, Pliskin N H, Thulborn K R 2007 J. Magn. Reson. Imaging 26 1222
Google Scholar
[17] Geldschläger O, Bosch D, Avdievich N I, Henning A 2021 Magn. Reson. Med. 85 1013
Google Scholar
[18] Sadeghi-Tarakameh A, DelaBarre L, Lagore R L, Torrado-Carvajal A, Wu X, Grant A, Adriany G, Metzger G J, Van De Moortele P F, Uǧurbil K, Atalar E, Eryaman Y 2020 Magn. Reson. Med. 84 484
Google Scholar
[19] Quettier L, Aubert G, Amadon A, Belorgey J, Berriaud C, Bonnelye C, Boulant N, Bredy Ph, Dilasser G, Dubois O, Gilgrass G, Gras V, Guihard Q, Jannot V, Juster F P, Lannou H, Lepretre F, Lerman C, Le Ster C, Mauconduit F, Molinié F, Nunio F, Scola L, Sinanna A, Touzery R, Védrine P, Vignaux A 2023 IEEE Trans. Appl. Supercond. 33 4400607
[20] Boulant N, Quettier L, Aubert G, Amadon A, Belorgey J, Berriaud C, Bonnelye C, Bredy Ph, Chazel E, Dilasser G, Dubois O, Giacomini E, Gilgrass G, Gras V, Guihard Q, Jannot V, Juster F P, Lannou H, Leprêtre F, Lerman C, Le Ster C, Luong M, Mauconduit F, Molinié F, Nunio F, Scola L, Sinanna A, Touzery R, Védrine P, Vignaud A, the Iseult Consortium 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 175
Google Scholar
[21] Boulant N, Mauconduit F, Gras V, Amadon A, Le Ster C, Luong M, Massire A, Pallier C, Sabatier L, Bottlaender M, Vignaud A, Le Bihan D 2024 Nat. Methods 21 2013
Google Scholar
[22] Eisenstein M 2024 Nat. Methods 21 1975
Google Scholar
[23] Zhang Y F, Yang C, Liang L, Shi Z, Zhu S, Chen C Z, Dai Y M, Zeng M S 2022 J. Magn. Reson. Imaging 56 1009
Google Scholar
[24] Shi Z, Zhao X Y, Zhu S, Miao X Y, Zhang Y F, Han S H, Wang B, Zhang B Y, Ye X D, Dai Y M, Chen C Z, Rao S X, Lin J, Zeng M S, Wang H 2023 Radiology 306 207
Google Scholar
[25] Bloch F 1946 Phys. Rev. 70 460
Google Scholar
[26] Edelstein W A, Glover G H, Hardy C J, Redington R W 1986 Magn. Reson. Med. 3 604
Google Scholar
[27] Ertürk M A, Wu X, Eryaman Y, Van De Moortele P F, Auerbach E J, Lagore R L, DelaBarre L, Vaughan J T, Uǧurbil K, Adriany G, Metzger G J 2017 Magn. Reson. Med. 77 434
Google Scholar
[28] Pohmann R, Speck O, Scheffler K 2016 Magn. Reson. Med. 75 801
Google Scholar
[29] Guérin B, Villena J F, Polimeridis A G, Adalsteinsson E, Daniel L, White J K, Wald L L 2017 Magn. Reson. Med. 78 1969
Google Scholar
[30] Uǧurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry P G, Kim S G, Lieu H, Tkac I, Vaughan T, Van De Moortele P F, Yacoub E, Zhu X H 2003 Magn. Reson. Imaging 21 1263
Google Scholar
[31] Tkáč I, Andersen P, Adriany G, Merkle H, Uǧurbil K, Gruetter R 2001 Magn. Reson. Med. 46 451
Google Scholar
[32] Yang S L, Hu J N, Kou Z F, Yang Y H 2008 Magn. Reson. Med. 59 236
Google Scholar
[33] Mangia S, Tkáč I, Gruetter R, Van De Moortele P F, Maraviglia B, Uǧurbil K 2007 J. Cereb. Blood Flow Metab. 27 1055
Google Scholar
[34] Atkinson I C, Thulborn K R 2010 NeuroImage 51 723
Google Scholar
[35] Lei H, Uǧurbil K, Chen W 2003 Proc. Natl. Acad. Sci. 100 14409
Google Scholar
[36] Chen W, Zhu X H, Gruetter R, Seaquist E R, Adriany G, Uǧurbil K 2001 Magn. Reson. Med. 45 349
Google Scholar
[37] Von Morze C, Xu D, Purcell D D, Hess C P, Mukherjee P, Saloner D, Kelley D A C, Vigneron D B 2007 J. Magn. Reson. Imaging 26 900
Google Scholar
[38] Peters A M, Brookes M J, Hoogenraad F G, Gowland P A, Francis S T, Morris P G, Bowtell R 2007 Magn. Reson. Imaging 25 748
Google Scholar
[39] Dumoulin S O, Fracasso A, Van Der Zwaag W, Siero J C W, Petridou N 2018 NeuroImage 168 345
Google Scholar
[40] Uludaǧ K, Blinder P 2018 NeuroImage 168 279
Google Scholar
[41] Olman C A, Inati S, Heeger D J 2007 NeuroImage 34 1126
Google Scholar
[42] Uludaǧ K, Müller-Bierl B, Uǧurbil K 2009 NeuroImage 48 150
Google Scholar
[43] Ogawa S, Menon R S, Tank D W, Kim S G, Merkle H, Ellermann J M, Uǧurbil K 1993 Biophys. J. 64 803
Google Scholar
[44] Koopmans P J, Yacoub E 2019 NeuroImage 197 668
Google Scholar
[45] Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele P F, Hu X, Uǧurbil K 2002 Magn. Reson. Med. 47 903
Google Scholar
[46] Golay X, Petersen E T 2006 Neuroimaging Clin. N. Am. 16 259
Google Scholar
[47] Gardener A G, Gowland P A, Francis S T 2009 Magn. Reson. Med. 61 874
Google Scholar
[48] Lu H, Hua J, Van Zijl P C M 2013 NMR Biomed. 26 932
Google Scholar
[49] Hua J, Jones C K, Qin Q, Van Zijl P C M 2013 Magn. Reson. Med. 69 1003
Google Scholar
[50] Huber L, Ivanov D, Krieger S N, Streicher M N, Mildner T, Poser B A, Möller H E, Turner R 2014 Magn. Reson. Med. 72 137
Google Scholar
[51] Yacoub E, Harel N, Uǧurbil K 2008 Proc. Natl. Acad. Sci. 105 10607
Google Scholar
[52] Fischl B, Dale A M 2000 Proc. Natl. Acad. Sci. 97 11050
Google Scholar
[53] Brodmann K 1909 Vergleichende Lokalisationslehre Der Großhirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues (Leipzig: Barth-Verlag) pp13—42
[54] Rockland K S, Pandya D N 1979 Brain Res. 179 3
Google Scholar
[55] Maunsell J H, Van Essen D C 1983 J. Neurosci. 3 2563
Google Scholar
[56] Felleman D J, Van Essen D C 1991 Cereb. Cortex 1 1
[57] Huber L, Finn E S, Chai Y, Goebel R, Stirnberg R, Stöcker T, Marrett S, Uludaǧ K, Kim S G, Han S, Bandettini P A, Poser B A 2021 Prog. Neurobiol. 207 101835
Google Scholar
[58] Feinberg D A, Hoenninger J C, Crooks L E, Kaufman L, Watts J C, Arakawa M 1985 Radiology 156 743
Google Scholar
[59] Schluppeck D, Sanchez-Panchuelo R-M, Francis S T 2018 NeuroImage 164 10
Google Scholar
[60] Kok P, Bains L J, Van Mourik T, Norris D G, De Lange F P 2016 Curr. Biol. 26 371
Google Scholar
[61] Jia K, Goebel R, Kourtzi Z 2023 Annu. Rev. Vis. Sci. 9 479
Google Scholar
[62] Lawrence S J D, Van Mourik T, Kok P, Koopmans P J, Norris D G, De Lange F P 2018 Curr. Biol. 28 3435
Google Scholar
[63] Qian Y, Zou J, Zhang Z, An J, Zuo Z, Zhuo Y, Wang D J J, Zhang P 2020 Proc. R. Soc. B Biol. Sci. 287 20200245
Google Scholar
[64] Jia K, Zamboni E, Kemper V, Rua C, Goncalves N R, Ng A K T, Rodgers C T, Williams G, Goebel R, Kourtzi Z 2020 Curr. Biol. 30 4177
Google Scholar
[65] Liu C, Guo F, Qian C, Zhang Z, Sun K, Wang D J, He S, Zhang P 2021 Prog. Neurobiol. 207 101897
Google Scholar
[66] Ge Y J, Zhou H, Qian C C, Zhang P, Wang L, He S 2020 Nat. Commun. 11 3925
Google Scholar
[67] Aitken F, Menelaou G, Warrington O, Koolschijn R S, Corbin N, Callaghan M F, Kok P 2020 PLOS Biol. 18 e3001023
Google Scholar
[68] Ng A K T, Jia K, Goncalves N R, Zamboni E, Kemper V G, Goebel R, Welchman A E, Kourtzi Z 2021 J. Neurosci. 41 8362
Google Scholar
[69] Liu T T, Fu J Z, Chai Y, Japee S, Chen G, Ungerleider L G, Merriam E P 2022 Nat. Commun. 13 1
[70] Haarsma J, Deveci N, Corbin N, Callaghan M F, Kok P 2023 J. Neurosci. 43 7946
Google Scholar
[71] Bergmann J, Petro L S, Abbatecola C, Li M S, Morgan A T, Muckli L 2024 Nat. Commun. 15 1002
Google Scholar
[72] Chai Y, Liu T T, Marrett S, Li L, Khojandi A, Handwerker D A, Alink A, Muckli L, Bandettini P A 2021 Prog. Neurobiol. 205 102121
Google Scholar
[73] De Martino F, Moerel M, Uǧurbil K, Goebel R, Yacoub E, Formisano E 2015 Proc. Natl. Acad. Sci. 112 16036
Google Scholar
[74] Moerel M, De Martino F, Uǧurbil K, Yacoub E, Formisano E 2019 Sci. Rep. 9 5502
Google Scholar
[75] Ahveninen J, Chang W T, Huang S, Keil B, Kopco N, Rossi S, Bonmassar G, Witzel T, Polimeni J R 2016 NeuroImage 143 116
Google Scholar
[76] Moerel M, Yacoub E, Gulban O F, Lage-Castellanos A, De Martino F 2021 Prog. Neurobiol. 207 101887
Google Scholar
[77] Faes L K, Martino F D, Huber L 2023 PLoS One 18 e0280855
Google Scholar
[78] Heynckes M, Lage-Castellanos A, De Weerd P, Formisano E, De Martino F 2023 Curr. Res. Neurobiol. 4 100075
Google Scholar
[79] Faes L K, Lage-Castellanos A, Valente G, Yu Z D, Cloos M A, Vizioli L, Moeller S, Yacoub E, De Martino F 2024 Imaging Neurosci. 2 1
[80] Huber L, Handwerker D A, Jangraw D C, Chen G, Hall A, Stüber C, Gonzalez-Castillo J, Ivanov D, Marrett S, Guidi M, Goense J, Poser B A, Bandettini P A 2017 Neuron 96 1253
Google Scholar
[81] Yu Y H, Huber L, Yang J J, Jangraw D C, Handwerker D A, Molfese P J, Chen G, Ejima Y, Wu J L, Bandettini P A 2019 Sci. Adv. 5 eaav9053
Google Scholar
[82] Persichetti A S, Avery J A, Huber L, Merriam E P, Martin A 2020 Curr. Biol. 30 1721
Google Scholar
[83] Yang J J, Huber L, Yu Y H, Bandettini P A 2021 Neurosci. Biobehav. Rev. 128 467
Google Scholar
[84] Kalyani A, Contier O, Klemm L, Azañon E, Schreiber S, Speck O, Reichert C, Kuehn E 2023 NeuroImage 283 120430
Google Scholar
[85] Huber L, Kassavetis P, Gulban O F, Hallett M, Horovitz S G 2023 Dystonia 2 10806
Google Scholar
[86] Finn E S, Huber L, Jangraw D C, Molfese P J, Bandettini P A 2019 Nat. Neurosci. 22 10
[87] Koster R, Chadwick M J, Chen Y, Berron D, Banino A, Düzel E, Hassabis D, Kumaran D 2018 Neuron 99 1342
Google Scholar
[88] Maass A, Schütze H, Speck O, Yonelinas A, Tempelmann C, Heinze H J, Berron D, Cardenas-Blanco A, Brodersen K H, Enno Stephan K, Düzel E 2014 Nat. Commun. 5 1
[89] Zhang K H, Chen L Y, Li Y H, Paez A G, Miao X Y, Cao D, Gu C M, Pekar J J, Van Zijl P C M, Hua J, Bakker A 2023 J. Neurosci. 43 2874
Google Scholar
[90] Sharoh D, Van Mourik T, Bains L J, Segaert K, Weber K, Hagoort P, Norris D G 2019 Proc. Natl. Acad. Sci. 116 21185
Google Scholar
[91] Zhan M, Pallier C, Agrawal A, Dehaene S, Cohen L 2023 Sci. Adv. 9 eadf6140
Google Scholar
[92] Margalit E, Jamison K W, Weiner K S, Vizioli L, Zhang R Y, Kay K N, Grill-Spector K 2020 J. Neurosci. 40 3008
Google Scholar
[93] Gau R, Bazin P L, Trampel R, Turner R, Noppeney U 2020 eLife 9 e46856
Google Scholar
[94] Finn E S, Huber L, Bandettini P A 2021 Prog. Neurobiol. 207 101930
Google Scholar
[95] Van Dijk J A, Fracasso A, Petridou N, Dumoulin S O 2021 Curr. Biol. 31 4635
Google Scholar
[96] Deshpande G, Wang Y, Robinson J 2022 Brain Inform. 9 2
Google Scholar
[97] Deshpande G, Zhao X, Robinson J 2022 NeuroImage 254 119078
Google Scholar
[98] Chai Y H, Morgan A T, Handwerker D A, Li L Q, Huber L, Sutton B P, Bandettini P A 2024 Imaging Neurosci. 2 1
[99] Rajimehr R, Xu H, Farahani A, Kornblith S, Duncan J, Desimone R 2024 Neuron 112 4130
Google Scholar
[100] Polimeni J R, Renvall V, Zaretskaya N, Fischl B 2018 NeuroImage 168 296
Google Scholar
[101] Kashyap S, Ivanov D, Havlicek M, Poser B A, Uludaǧ K 2018 NeuroImage 168 332
Google Scholar
[102] Yun S D, Küppers F, Shah N J 2024 J. Magn. Reson. Imaging 59 747
Google Scholar
[103] Vizioli L, Moeller S, Dowdle L, Akçakaya M, De Martino F, Yacoub E, Uǧurbil K 2021 Nat. Commun. 12 1
Google Scholar
[104] Iyyappan Valsala P, Veldmann M, Bosch D, Scheffler K, Ehses P 2024 Magn. Reson. Med. 92 186
Google Scholar
[105] Knudsen L, Bailey C J, Blicher J U, Yang Y, Zhang P, Lund T E 2023 NeuroImage 271 120011
Google Scholar
[106] Demirel Ö B, Moeller S, Vizioli L, Yaman B, Dowdle L, Yacoub E, Uǧurbil K, Akçakaya M 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER) Baltimore, MD, USA, April 24—27, 2023 p1
[107] Lawrence S J D, Formisano E, Muckli L, De Lange F P 2019 NeuroImage 197 785
Google Scholar
[108] McColgan P, Joubert J, Tabrizi S J, Rees G 2020 Nat. Rev. Neurosci. 21 8
[109] Schreiber S, Northall A, Weber M, Vielhaber S, Kuehn E 2021 Nat. Rev. Neurosci. 22 68
[110] Kwong K K, Belliveau J W, Chesler D A, Goldberg I E, Weisskoff R M, Poncelet B P, Kennedy D N, Hoppel B E, Cohen M S, Turner R 1992 Proc. Natl. Acad. Sci. 89 5675
Google Scholar
[111] Shao X F, Guo F H, Shou Q Y, Wang K, Jann K, Yan L R, Toga A W, Zhang P, Wang D J J 2021 NeuroImage 245 118724
Google Scholar
[112] Buxton R B 2005 J. Magn. Reson. Imaging 22 723
Google Scholar
[113] Lu H, Golay X, Pekar J J, Van Zijl P C M 2003 Magn. Reson. Med. 50 263
Google Scholar
[114] Davis T L, Kwong K K, Weisskoff R M, Rosen B R 1998 Proc. Natl. Acad. Sci. 95 1834
Google Scholar
[115] Hoge R D, Atkinson J, Gill B, Crelier G R, Marrett S, Pike G B 1999 Magn. Reson. Med. 42 849
Google Scholar
[116] Kim S G, Rostrup E, Larsson H B W, Ogawa S, Paulson O B 1999 Magn. Reson. Med. 41 1152
Google Scholar
[117] Huber L, Uludaǧ K, Möller H E 2019 NeuroImage 197 742
Google Scholar
[118] Logothetis N K 2008 Nature 453 869
Google Scholar
[119] Polimeni J R, Lewis L D 2021 Prog. Neurobiol. 207 102174
Google Scholar
[120] Jasanoff A 2007 Trends Neurosci. 30 603
Google Scholar
[121] Uǧurbil K, Toth L, Kim D S 2003 Trends Neurosci. 26 108
Google Scholar
[122] Uludaǧ K, Havlicek M 2021 Prog. Neurobiol. 207 102055
Google Scholar
[123] O’Herron P, Chhatbar P Y, Levy M, Shen Z, Schramm A E, Lu Z, Kara P 2016 Nature 534 378
Google Scholar
[124] Menon R S, Kim S G 1999 Trends Cogn. Sci. 3 207
Google Scholar
[125] Bandettini P A, Petridou N, Bodurka J 2005 Appl. Magn. Reson. 29 65
Google Scholar
[126] Bodurka J, Bandettini P A 2002 Magn. Reson. Med. 47 1052
Google Scholar
[127] Luo Q, Gao J H 2010 Magn. Reson. Med. 64 1832
Google Scholar
[128] Xiong J, Fox P T, Gao J H 2003 Hum. Brain Mapp. 20 41
Google Scholar
[129] Luo Q F, Lu H, Lu H B, Senseman D, Worsley K, Yang Y H, Gao J H 2009 NeuroImage 47 1268
Google Scholar
[130] Jiang X, Lu H, Shigeno S, Tan L H, Yang Y H, Ragsdale C W, Gao J H 2014 Magn. Reson. Med. 72 1311
Google Scholar
[131] Chai Y H, Bi G Q, Wang L P, Xu F Q, Wu R Q, Zhou X, Qiu B S, Lei H, Zhang Y Y, Gao J H 2016 NeuroImage 125 533
Google Scholar
[132] Jiang X, Sheng J W, Li H J, Chai Y H, Zhou X, Wu B, Guo X D, Gao J H 2016 Magn. Reson. Med. 75 519
Google Scholar
[133] Kamei H, Iramina K, Yoshikawa K, Ueno S 1999 IEEE Trans. Magn. 35 4109
Google Scholar
[134] Bianciardi M, Di Russo F, Aprile T, Maraviglia B, Hagberg G E 2004 Magn. Reson. Imaging 22 1429
Google Scholar
[135] Konn D, Gowland P, Bowtell R 2003 Magn. Reson. Med. 50 40
Google Scholar
[136] Liston A D, Salek-Haddadi A, Kiebel S J, Hamandi K, Turner R, Lemieux L 2004 Magn. Reson. Imaging 22 1441
Google Scholar
[137] Chow L S, Cook G G, Whitby E, Paley M N J 2006 NeuroImage 30 835
Google Scholar
[138] Chow L S, Dagens A, Fu Y, Cook G G, Paley M N J 2008 Magn. Reson. Med. 60 1147
Google Scholar
[139] Xue Y Q, Chen X Y, Grabowski T, Xiong J H 2009 Magn. Reson. Med. 61 1073
Google Scholar
[140] Singh M 1994 IEEE Trans. Nucl. Sci. 41 349
Google Scholar
[141] Chu R, De Zwart J A, Van Gelderen P, Fukunaga M, Kellman P, Holroyd T, Duyn J H 2004 NeuroImage 23 1059
Google Scholar
[142] Parkes L M, De Lange F P, Fries P, Toni I, Norris D G 2007 Magn. Reson. Med. 57 411
Google Scholar
[143] Mandelkow H, Halder P, Brandeis D, Soellinger M, De Zanche N, Luechinger R, Boesiger P 2007 NeuroImage 37 149
Google Scholar
[144] Tang L, Avison M J, Gatenby J C, Gore J C 2008 Magn. Reson. Imaging 26 484
Google Scholar
[145] Luo Q F, Jiang X, Chen B, Zhu Y, Gao J H 2011 Magn. Reson. Med. 65 1680
Google Scholar
[146] Toi P T, Jang H J, Min K, Kim S P, Lee S K, Lee J, Kwag J, Park J Y 2022 Science 378 160
Google Scholar
[147] Silva A C, Koretsky A P 2002 Proc. Natl. Acad. Sci. 99 15182
Google Scholar
[148] Yu X, Qian C Q, Chen D Y, Dodd S J, Koretsky A P 2014 Nat. Methods 11 55
Google Scholar
[149] Yu X, He Y, Wang M S, Merkle H, Dodd S J, Silva A C, Koretsky A P 2016 Nat. Methods 13 337
Google Scholar
[150] Hodono S, Rideaux R, Van Kerkoerle T, Cloos M A 2023 Imaging Neurosci. 1 1
[151] Choi S H, Im G H, Choi S, Yu X, Bandettini P A, Menon R S, Kim S G 2024 Sci. Adv. 10 eadl0999
Google Scholar
[152] Phi Van V D, Sen S, Jasanoff A 2024 Sci. Adv. 10 eadl2034
Google Scholar
[153] Wilson J M, Wu H, Kerr A B, Wandell B A, Gardner J L 2024 Imaging Neurosci. 2 1
[154] Kwon D 2023 Nature 617 640
Google Scholar
[155] Thorp H H 2023 Science 381 1058
[156] Henning A 2018 NeuroImage 168 181
Google Scholar
[157] Godlewska B R, Clare S, Cowen P J, Emir U E 2017 Front. Psychiatry 8 123
Google Scholar
[158] Öz G, Tkáč I 2011 Magn. Reson. Med. 65 901
Google Scholar
[159] Biria M, Banca P, Healy M P, Keser E, Sawiak S J, Rodgers C T, Rua C, De Souza A M F L P, Marzuki A A, Sule A, Ersche K D, Robbins T W 2023 Nat. Commun. 14 3324
Google Scholar
[160] Jia K, Wang M, Steinwurzel C, Ziminski J J, Xi Y, Emir U, Kourtzi Z 2024 Sci. Adv. 10 eado7378
Google Scholar
[161] Bednařík P, Tkáč I, Giove F, DiNuzzo M, Deelchand D K, Emir U E, Eberly L E, Mangia S 2015 J. Cereb. Blood Flow Metab. 35 601
Google Scholar
[162] Bednařík P, Tkáč I, Giove F, Eberly L E, Deelchand D K, Barreto F R, Mangia S 2018 J. Cereb. Blood Flow Metab. 38 347
Google Scholar
[163] Ip I B, Berrington A, Hess A T, Parker A J, Emir U E, Bridge H 2017 NeuroImage 155 113
Google Scholar
[164] Maudsley A A, Hilal S K, Perman W H, Simon H E 1983 J. Magn. Reson. 51 147
[165] Hingerl L, Strasser B, Moser P, Hangel G, Motyka S, Heckova E, Gruber S, Trattnig S, Bogner W 2020 Invest. Radiol. 55 239
Google Scholar
[166] Bednarik P, Goranovic D, Svatkova A, Niess F, Hingerl L, Strasser B, Deelchand D K, Spurny-Dworak B, Krssak M, Trattnig S, Hangel G, Scherer T, Lanzenberger R, Bogner W 2023 Nat. Biomed. Eng. 7 1001
Google Scholar
[167] Rata M, Giles S L, DeSouza N M, Leach M O, Payne G S 2014 NMR Biomed. 27 158
Google Scholar
[168] Nagel A M, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad L R, Weber M A 2011 Invest. Radiol. 46 759
Google Scholar
[169] Santos-Díaz A, Noseworthy M D 2020 Biomed. Signal Process. Control 60 101967
Google Scholar
[170] Chen W, Zhu X H, Adriany G, Uǧurbil K 1997 Magn. Reson. Med. 38 551
Google Scholar
[171] Bogner W, Chmelik M, Andronesi O C, Sorensen A G, Trattnig S, Gruber S 2011 Magn. Reson. Med. 66 923
Google Scholar
[172] Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K 2016 Magn. Reson. Mater. Phys. Biol. Med. 29 579
Google Scholar
[173] Madelin G, Regatte R R 2013 J. Magn. Reson. Imaging 38 511
Google Scholar
[174] Madelin G, Lee J S, Regatte R R, Jerschow A 2014 Prog. Nucl. Magn. Reson. Spectrosc. 79 14
Google Scholar
[175] Rooney W D, Springer Jr C S 1991 NMR Biomed. 4 209
Google Scholar
[176] Hoesl M A U, Schad L R, Rapacchi S 2020 Magn. Reson. Med. 84 2412
Google Scholar
[177] Platt T, Ladd M E, Paech D 2021 Invest. Radiol. 56 705
Google Scholar
[178] Ra J B, Hilal S K, Oh C H, Mun I K 1988 Magn. Reson. Med. 7 11
Google Scholar
[179] Kraff O, Fischer A, Nagel A M, Mönninghoff C, Ladd M E 2015 J. Magn. Reson. Imaging 41 13
Google Scholar
[180] Nagel A M, Laun F B, Weber M A, Matthies C, Semmler W, Schad L R 2009 Magn. Reson. Med. 62 1565
Google Scholar
[181] Pipe J G, Zwart N R, Aboussouan E A, Robison R K, Devaraj A, Johnson K O 2011 Magn. Reson. Med. 66 1303
Google Scholar
[182] Licht C, Reichert S, Guye M, Schad L R, Rapacchi S 2024 Magn. Reson. Med. 91 926
Google Scholar
[183] Wiggins G C, Brown R, Lakshmanan K 2016 NMR Biomed. 29 96
Google Scholar
[184] Bangerter N K, Kaggie J D, Taylor M D, Hadley J R 2016 NMR Biomed. 29 107
Google Scholar
[185] Thulborn K R 2018 NeuroImage 168 250
Google Scholar
[186] Nunes Neto L P, Madelin G, Sood T P, Wu C C, Kondziolka D, Placantonakis D, Golfinos J G, Chi A, Jain R 2018 Neuroradiology 60 795
Google Scholar
[187] Regnery S, Behl N G R, Platt T, Weinfurtner N, Windisch P, Deike-Hofmann K, Sahm F, Bendszus M, Debus J, Ladd M E, Schlemmer H P, Rieken S, Adeberg S, Paech D 2020 NeuroImage Clin. 28 102427
Google Scholar
[188] Haeger A, Coste A, Lerman-Rabrait C, Lagarde J, Schulz J B, Vignaud A, Sarazin M, Bottlaender M, Reetz K, Romanzetti S, Boumezbeur F 2020 Alzheimers Dement. 16 e042107
Google Scholar
[189] Stobbe R, Boyd A, Smyth P, Emery D, Valdés Cabrera D, Beaulieu C 2021 Front. Neurol. 12 693447
Google Scholar
[190] Wilferth T, Mennecke A, Gast L V, Lachner S, Müller M, Rothhammer V, Huhn K, Uder M, Doerfler A, Nagel A M, Schmidt M 2022 NMR Biomed. 35 e4806
Google Scholar
[191] Katscher U, Börnert P, Leussler C, Van Den Brink J S 2003 Magn. Reson. Med. 49 144
Google Scholar
[192] Zhu Y 2004 Magn. Reson. Med. 51 775
Google Scholar
[193] Grissom W, Yip C, Zhang Z, Stenger V A, Fessler J A, Noll D C 2006 Magn. Reson. Med. 56 620
Google Scholar
[194] Gras V, Vignaud A, Amadon A, Le Bihan D, Boulant N 2017 Magn. Reson. Med. 77 635
Google Scholar
[195] Fiedler T M, Ladd M E, Bitz A K 2018 NeuroImage 168 33
Google Scholar
[196] Jezzard P, Clare S 1999 Hum. Brain Mapp. 8 80
Google Scholar
[197] Setsompop K, Feinberg D A, Polimeni J R 2016 NMR Biomed. 29 1198
Google Scholar
[198] Stockmann J P, Wald L L 2018 NeuroImage 168 71
Google Scholar
[199] Bates S, Dumoulin S O, Folkers P J M, Formisano E, Goebel R, Haghnejad A, Helmich R C, Klomp D, Van Der Kolk A G, Li Y, Nederveen A, Norris D G, Petridou N, Roell S, Scheenen T W J, Schoonheim M M, Voogt I, Webb A 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 211
Google Scholar
[200] Winter L, Niendorf T 2016 Magn. Reson. Mater. Phys. Biol. Med. 29 641
Google Scholar
Metrics
- Abstract views: 389
- PDF Downloads: 22
- Cited By: 0