Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Current status and perspectives of ultrahigh-field magnetic resonance imaging

QIN Bolin GAO Jiahong

Citation:

Current status and perspectives of ultrahigh-field magnetic resonance imaging

QIN Bolin, GAO Jiahong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Magnetic resonance imaging (MRI) is one of the most important imaging modalities used in contemporary clinical radiology research and diagnostic practice due to its non-invasive nature, absence of ionizing radiation, high soft tissue contrast, and diverse imaging capabilities. Nevertheless, traditional MRI systems are limited by a relatively low signal-to-noise ratio (SNR), which can be enhanced by increasing the strength of the main magnetic field. Ultra-high field MRI (UHF-MRI) typically refers to MRI systems with a main magnetic field strength of 7 T or higher. The UHF-MRI improves image SNR and extends the boundaries of spatial resolution and detection sensitivity. These advancements not only provide clinicians with richer and more accurate physiological and pathological information but also open new avenues for research on life sciences and cognitive neuroscience.Currently, the UHF-MRI plays a pivotal role in brain functional and metabolic imaging. In the brain function research, the implementation of high-resolution mesoscale functional imaging techniques has enabled the investigation of laminar-specific neuronal activity within cortical layers, including feedforward and feedback neural information processing pathways. In metabolic studies, the application of hydrogen and multi-nuclear spectroscopy and imaging has yielded more accurate metabolic data, thereby holding substantial promise for advancing our understanding of the pathophysiology underlying functional and metabolic diseases. However, the UHF-MRI is also subject to certain limitations, including issues related to radio-frequency (RF) field in homogeneity, elevated specific absorption ratio (SAR), and susceptibility artifacts.In this paper, the historical evolution and theoretical underpinnings of UHF-MRI are reviewed, its principal advantages over low-field MRI is elucidated, and the contemporary research on UHF-MRI applications in human brain function and metabolic imaging research are integrated together. Furthermore, the technical limitations associated with UHF-MRI implementation are critically examined and the potential avenues are proposed for the future research direction.
  • 图 1  不同场强(3 T与7 T)下的${T_1}$加权成像与二维EPI图像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号分别为西门子MAGNETOM Prisma 3 T和西门子MAGNETOM Terra 7 T, 受试者为同一位健康成年男性 (a) 3 T在1 mm×1 mm×1 mm分辨率下的磁化强度准备快速梯度回波(magnetization prepared rapid gradient echo, MPRAGE)图像(重复时间(repetition time, TR)= 2530 ms, 回波时间(echo time, TE)= 2.98 ms, 反转时间(inversion time, TI)= 1100 ms, 采集时间(acquisition time, TA)= 5∶56); (b) 7 T在0.65 mm各向同性分辨率下的磁化强度准备双快速梯度回波(magnetization prepared 2 rapid gradient echo, MP2 RAGE)图像(TR = 5000 ms, TE = 2.05 ms, TI1/TI2 = 900/2750 ms, TA = 10∶57); (c) 3 T在2 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 30 ms, 翻转角(flip angle, FA)= 90°, 回波间隙(echo spacing, ES)= 0.54 ms); (d) 7 T在2 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 22 ms, FA = 90°, ES = 0.53 ms); (e) 7 T在0.85 mm各向同性分辨率下的EPI图像(TR = 2000 ms, TE = 27 ms, FA = 70°, ES = 1.08 ms)

    Figure 1.  Comparison of ${T_1}$-weighted images and 2D-EPI on different magnetic fields (3 T vs. 7 T), images were acquired from the same healthy male adult volunteer on MAGNETOM Prisma 3 T and MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) 3 T MPRAGE image at 1 mm×1 mm×1 mm resolution (TR = 2530 ms, TE = 2.98 ms, TI = 1100 ms, TA = 5∶56); (b) 7 T MP2 RAGE image at 0.65 mm isotropic resolution (TR = 5000 ms, TE = 2.05 ms, TI1/TI2 = 900/2750 ms, TA = 10∶57); (c) 3 T 2D-EPI images at 2 mm isotropic resolution (TR = 2000 ms, TE = 30 ms, FA = 90°, ES = 0.54 ms); (d) 7 T 2D-EPI images at 2 mm isotropic resolution (TR = 2000 ms, TE = 22 ms, FA = 90°, ES = 0.53 ms); (e) 7 T 2D-EPI images at 0.85 mm isotropic resolution (TR = 2000 ms, TE = 27 ms, FA = 70°, ES = 1.08 ms).

    图 2  7 T大脑动脉和静脉血管结构成像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性 (a) TOF成像在横断面的最大值投影(0.2 mm×0.2 mm×0.4 mm插值重建, TR = 35 ms, TE = 3.78 ms, TA = 13:54); (b) SWI成像在横断面的最小值投影(0.12 mm×0.12 mm×1.5 mm插值重建, TR = 21 ms, TE = 14 ms, TA = 7∶27)

    Figure 2.  7 T brain arteries and veins structure imaging. Images were acquired from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) Maximum intensity projection on transversal TOF image (0.2 mm×0.2 mm×0.4 mm interpolated reconstruction, TR = 35 ms, TE = 3.78 ms, TA = 13:54); (b) minimum intensity projection on transversal SWI image (0.12 mm×0.12 mm×1.5 mm interpolated reconstruction, TR = 21 ms, TE = 14 ms, TA = 7∶27).

    图 3  手指运动任务的7 T脑功能成像, 图像采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性, 使用VASO序列[50](0.8 mm×0.8 mm×1.3 mm, TR1/TR2 = 69/4419 ms, TE = 25.4 ms, FA = 45°, ES = 1.1 ms) (a) VASO图像激活图; (b) BOLD图像激活图; (c) 皮层分层感兴趣区(region of interest, ROI); (d) 皮层分层激活分布(信号相对变化)与皮层深度的关系, 灰质(gray matter, GM)最浅处边界为脑脊液(cerebral spinal fluid, CSF), 最深处边界为白质(white matter, WM), 蓝色曲线为BOLD激活分布, 红色曲线为VASO激活分布, 曲线中的误差棒为每个分层ROI的统计样本标准差

    Figure 3.  7 T fMRI on finger-tapping task. VASO sequence[50] (0.8 mm×0.8 mm×1.3 mm, TR1/TR2 = 69/4419 ms, TE = 25.4 ms, FA = 45°, ES = 1.1 ms) was implemented from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) VASO activation; (b) BOLD activation; (c) layer ROI; (d) laminar profile of percent signal change activation for BOLD (blue) and VASO (red), the error bars represent the sample standard deviation within each layer.

    图 4  后扣带回皮质(posterior cingulate cortex, PCC)的7 T 1H-MRS, 数据采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年女性, 使用semi-LASER序列[158](20 mm×20 mm×20 mm, TR = 5000 ms, TE1/TE2/TE3 = 7/10/9 ms, FA = 45°, 平均次数(Averages) = 64) (a) PCC体素位置; (b) 7 T PCC 1H-MRS及一些代谢物谱峰分布

    Figure 4.  In vivo 1H-MRS on PCC using semi-LASER sequence (20 mm×20 mm×20 mm, TR = 5000 ms, TE1/TE2/TE3 = 7/10/9 ms, FA = 45°, Averages = 64) from a healthy female adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University: (a) PCC voxel location; (b) 7 T PCC 1H-MRS and metabolites.

    图 5  人脑7 T 23Na磁共振成像(图像由中国科学院生物物理研究所提供, 扫描仪型号为西门子MAGNETOM Terra 7 T, 使用苏州众志医疗公司提供的23Na-1H双频头部线圈, 受试者为健康成年男性), 使用超短回波(UTE, ultra-short TE)序列(2.5 mm×2.5 mm×2.5 mm, TR = 12.8 ms, TE = 0.27 ms, FA = 19°, TA = 4∶25) (a) 矢状面; (b) 冠状面; (c) 横断面

    Figure 5.  In vivo 23Na MRI of human brain at 7 T, UTE sequence (2.5 mm×2.5 mm×2.5 mm, TR = 12.8 ms, TE = 0.27 ms, FA = 19°, TA = 4∶25) was implemented from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany): (a) Sagittal; (b) coronal; (c) axial, images courtesy of Institute of Biophysics, Chinese Academy of Sciences.

    图 6  7 T MRI射频场在圆极化(circular polarized, CP)模式下人脑成像的FA分布图(数据采集自北京大学磁共振成像研究中心, 扫描仪型号为西门子MAGNETOM Terra 7 T, 受试者为健康成年男性)

    Figure 6.  FA map covering the brain on the 7 T scanner in CP mode, images were acquired from a healthy male adult volunteer on MAGNETOM Terra 7 T (Siemens Healthcare, Erlangen, Germany) at Center for MRI Research, Peking University.

    Baidu
  • [1]

    Uǧurbil K 2014 IEEE Trans. Biomed. Eng. 61 1364Google Scholar

    [2]

    Lauterbur P C 1973 Nature 242 5394

    [3]

    Bomsdorf H, Helzel T, Kunz D, Röschmann P, Tschendel O, Wieland J 1988 NMR Biomed. 1 151Google Scholar

    [4]

    Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R 1990 NMR Biomed. 3 31Google Scholar

    [5]

    Bomsdorf H, Röschmann P, Wieland J 1991 Magn. Reson. Med. 22 10Google Scholar

    [6]

    Uǧurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim S G, Menon R, Merkle H, Ogawa S 1993 Magn. Reson. Q. 9 259

    [7]

    Ogawa S, Tank D W, Menon R, Ellermann J M, Kim S G, Merkle H, Uǧurbil K 1992 Proc. Natl. Acad. Sci. 89 5951Google Scholar

    [8]

    Robitaille P M L, Abduljalil A M, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres D M, Spigos D 1998 NMR Biomed. 11 263Google Scholar

    [9]

    Robitaille P M L, Abduljalil A M, Kangarlu A 2000 J. Comput. Assist. Tomogr. 24 2Google Scholar

    [10]

    Vaughan J T, Garwood M, Collins C M, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith M B, Uǧurbil K 2001 Magn. Reson. Med. 46 24Google Scholar

    [11]

    Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele P F, Adriany G, Andersen P, Vaughan J T, Merkle H, Uǧurbil K, Hu X 2001 Magn. Reson. Med. 45 588Google Scholar

    [12]

    Feinberg D A, Beckett A J S, Vu A T, Stockmann J, Huber L, Ma S, Ahn S, Setsompop K, Cao X, Park S, Liu C, Wald L L, Polimeni J R, Mareyam A, Gruber B, Stirnberg R, Liao C, Yacoub E, Davids M, Bell P, Rummert E, Koehler M, Potthast A, Gonzalez-Insua I, Stocker S, Gunamony S, Dietz P 2023 Nat. Methods 20 2048Google Scholar

    [13]

    Thulborn K R 2006 Ultra High Field Magnetic Resonance Imaging (Boston, MA: Springer US) pp105—126

    [14]

    Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, Van De Moortele P F, Garwood M, Uǧurbil K 2006 Magn. Reson. Med. 56 1274Google Scholar

    [15]

    Ivanov D, De Martino F, Formisano E, Fritz F J, Goebel R, Huber L, Kashyap S, Kemper V G, Kurban D, Roebroeck A, Sengupta S, Sorger B, Tse D H Y, Uludaǧ K, Wiggins C J, Poser B A 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 159Google Scholar

    [16]

    Atkinson I C, Renteria L, Burd H, Pliskin N H, Thulborn K R 2007 J. Magn. Reson. Imaging 26 1222Google Scholar

    [17]

    Geldschläger O, Bosch D, Avdievich N I, Henning A 2021 Magn. Reson. Med. 85 1013Google Scholar

    [18]

    Sadeghi-Tarakameh A, DelaBarre L, Lagore R L, Torrado-Carvajal A, Wu X, Grant A, Adriany G, Metzger G J, Van De Moortele P F, Uǧurbil K, Atalar E, Eryaman Y 2020 Magn. Reson. Med. 84 484Google Scholar

    [19]

    Quettier L, Aubert G, Amadon A, Belorgey J, Berriaud C, Bonnelye C, Boulant N, Bredy Ph, Dilasser G, Dubois O, Gilgrass G, Gras V, Guihard Q, Jannot V, Juster F P, Lannou H, Lepretre F, Lerman C, Le Ster C, Mauconduit F, Molinié F, Nunio F, Scola L, Sinanna A, Touzery R, Védrine P, Vignaux A 2023 IEEE Trans. Appl. Supercond. 33 4400607

    [20]

    Boulant N, Quettier L, Aubert G, Amadon A, Belorgey J, Berriaud C, Bonnelye C, Bredy Ph, Chazel E, Dilasser G, Dubois O, Giacomini E, Gilgrass G, Gras V, Guihard Q, Jannot V, Juster F P, Lannou H, Leprêtre F, Lerman C, Le Ster C, Luong M, Mauconduit F, Molinié F, Nunio F, Scola L, Sinanna A, Touzery R, Védrine P, Vignaud A, the Iseult Consortium 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 175Google Scholar

    [21]

    Boulant N, Mauconduit F, Gras V, Amadon A, Le Ster C, Luong M, Massire A, Pallier C, Sabatier L, Bottlaender M, Vignaud A, Le Bihan D 2024 Nat. Methods 21 2013Google Scholar

    [22]

    Eisenstein M 2024 Nat. Methods 21 1975Google Scholar

    [23]

    Zhang Y F, Yang C, Liang L, Shi Z, Zhu S, Chen C Z, Dai Y M, Zeng M S 2022 J. Magn. Reson. Imaging 56 1009Google Scholar

    [24]

    Shi Z, Zhao X Y, Zhu S, Miao X Y, Zhang Y F, Han S H, Wang B, Zhang B Y, Ye X D, Dai Y M, Chen C Z, Rao S X, Lin J, Zeng M S, Wang H 2023 Radiology 306 207Google Scholar

    [25]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [26]

    Edelstein W A, Glover G H, Hardy C J, Redington R W 1986 Magn. Reson. Med. 3 604Google Scholar

    [27]

    Ertürk M A, Wu X, Eryaman Y, Van De Moortele P F, Auerbach E J, Lagore R L, DelaBarre L, Vaughan J T, Uǧurbil K, Adriany G, Metzger G J 2017 Magn. Reson. Med. 77 434Google Scholar

    [28]

    Pohmann R, Speck O, Scheffler K 2016 Magn. Reson. Med. 75 801Google Scholar

    [29]

    Guérin B, Villena J F, Polimeridis A G, Adalsteinsson E, Daniel L, White J K, Wald L L 2017 Magn. Reson. Med. 78 1969Google Scholar

    [30]

    Uǧurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry P G, Kim S G, Lieu H, Tkac I, Vaughan T, Van De Moortele P F, Yacoub E, Zhu X H 2003 Magn. Reson. Imaging 21 1263Google Scholar

    [31]

    Tkáč I, Andersen P, Adriany G, Merkle H, Uǧurbil K, Gruetter R 2001 Magn. Reson. Med. 46 451Google Scholar

    [32]

    Yang S L, Hu J N, Kou Z F, Yang Y H 2008 Magn. Reson. Med. 59 236Google Scholar

    [33]

    Mangia S, Tkáč I, Gruetter R, Van De Moortele P F, Maraviglia B, Uǧurbil K 2007 J. Cereb. Blood Flow Metab. 27 1055Google Scholar

    [34]

    Atkinson I C, Thulborn K R 2010 NeuroImage 51 723Google Scholar

    [35]

    Lei H, Uǧurbil K, Chen W 2003 Proc. Natl. Acad. Sci. 100 14409Google Scholar

    [36]

    Chen W, Zhu X H, Gruetter R, Seaquist E R, Adriany G, Uǧurbil K 2001 Magn. Reson. Med. 45 349Google Scholar

    [37]

    Von Morze C, Xu D, Purcell D D, Hess C P, Mukherjee P, Saloner D, Kelley D A C, Vigneron D B 2007 J. Magn. Reson. Imaging 26 900Google Scholar

    [38]

    Peters A M, Brookes M J, Hoogenraad F G, Gowland P A, Francis S T, Morris P G, Bowtell R 2007 Magn. Reson. Imaging 25 748Google Scholar

    [39]

    Dumoulin S O, Fracasso A, Van Der Zwaag W, Siero J C W, Petridou N 2018 NeuroImage 168 345Google Scholar

    [40]

    Uludaǧ K, Blinder P 2018 NeuroImage 168 279Google Scholar

    [41]

    Olman C A, Inati S, Heeger D J 2007 NeuroImage 34 1126Google Scholar

    [42]

    Uludaǧ K, Müller-Bierl B, Uǧurbil K 2009 NeuroImage 48 150Google Scholar

    [43]

    Ogawa S, Menon R S, Tank D W, Kim S G, Merkle H, Ellermann J M, Uǧurbil K 1993 Biophys. J. 64 803Google Scholar

    [44]

    Koopmans P J, Yacoub E 2019 NeuroImage 197 668Google Scholar

    [45]

    Pfeuffer J, Adriany G, Shmuel A, Yacoub E, Van De Moortele P F, Hu X, Uǧurbil K 2002 Magn. Reson. Med. 47 903Google Scholar

    [46]

    Golay X, Petersen E T 2006 Neuroimaging Clin. N. Am. 16 259Google Scholar

    [47]

    Gardener A G, Gowland P A, Francis S T 2009 Magn. Reson. Med. 61 874Google Scholar

    [48]

    Lu H, Hua J, Van Zijl P C M 2013 NMR Biomed. 26 932Google Scholar

    [49]

    Hua J, Jones C K, Qin Q, Van Zijl P C M 2013 Magn. Reson. Med. 69 1003Google Scholar

    [50]

    Huber L, Ivanov D, Krieger S N, Streicher M N, Mildner T, Poser B A, Möller H E, Turner R 2014 Magn. Reson. Med. 72 137Google Scholar

    [51]

    Yacoub E, Harel N, Uǧurbil K 2008 Proc. Natl. Acad. Sci. 105 10607Google Scholar

    [52]

    Fischl B, Dale A M 2000 Proc. Natl. Acad. Sci. 97 11050Google Scholar

    [53]

    Brodmann K 1909 Vergleichende Lokalisationslehre Der Großhirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues (Leipzig: Barth-Verlag) pp13—42

    [54]

    Rockland K S, Pandya D N 1979 Brain Res. 179 3Google Scholar

    [55]

    Maunsell J H, Van Essen D C 1983 J. Neurosci. 3 2563Google Scholar

    [56]

    Felleman D J, Van Essen D C 1991 Cereb. Cortex 1 1

    [57]

    Huber L, Finn E S, Chai Y, Goebel R, Stirnberg R, Stöcker T, Marrett S, Uludaǧ K, Kim S G, Han S, Bandettini P A, Poser B A 2021 Prog. Neurobiol. 207 101835Google Scholar

    [58]

    Feinberg D A, Hoenninger J C, Crooks L E, Kaufman L, Watts J C, Arakawa M 1985 Radiology 156 743Google Scholar

    [59]

    Schluppeck D, Sanchez-Panchuelo R-M, Francis S T 2018 NeuroImage 164 10Google Scholar

    [60]

    Kok P, Bains L J, Van Mourik T, Norris D G, De Lange F P 2016 Curr. Biol. 26 371Google Scholar

    [61]

    Jia K, Goebel R, Kourtzi Z 2023 Annu. Rev. Vis. Sci. 9 479Google Scholar

    [62]

    Lawrence S J D, Van Mourik T, Kok P, Koopmans P J, Norris D G, De Lange F P 2018 Curr. Biol. 28 3435Google Scholar

    [63]

    Qian Y, Zou J, Zhang Z, An J, Zuo Z, Zhuo Y, Wang D J J, Zhang P 2020 Proc. R. Soc. B Biol. Sci. 287 20200245Google Scholar

    [64]

    Jia K, Zamboni E, Kemper V, Rua C, Goncalves N R, Ng A K T, Rodgers C T, Williams G, Goebel R, Kourtzi Z 2020 Curr. Biol. 30 4177Google Scholar

    [65]

    Liu C, Guo F, Qian C, Zhang Z, Sun K, Wang D J, He S, Zhang P 2021 Prog. Neurobiol. 207 101897Google Scholar

    [66]

    Ge Y J, Zhou H, Qian C C, Zhang P, Wang L, He S 2020 Nat. Commun. 11 3925Google Scholar

    [67]

    Aitken F, Menelaou G, Warrington O, Koolschijn R S, Corbin N, Callaghan M F, Kok P 2020 PLOS Biol. 18 e3001023Google Scholar

    [68]

    Ng A K T, Jia K, Goncalves N R, Zamboni E, Kemper V G, Goebel R, Welchman A E, Kourtzi Z 2021 J. Neurosci. 41 8362Google Scholar

    [69]

    Liu T T, Fu J Z, Chai Y, Japee S, Chen G, Ungerleider L G, Merriam E P 2022 Nat. Commun. 13 1

    [70]

    Haarsma J, Deveci N, Corbin N, Callaghan M F, Kok P 2023 J. Neurosci. 43 7946Google Scholar

    [71]

    Bergmann J, Petro L S, Abbatecola C, Li M S, Morgan A T, Muckli L 2024 Nat. Commun. 15 1002Google Scholar

    [72]

    Chai Y, Liu T T, Marrett S, Li L, Khojandi A, Handwerker D A, Alink A, Muckli L, Bandettini P A 2021 Prog. Neurobiol. 205 102121Google Scholar

    [73]

    De Martino F, Moerel M, Uǧurbil K, Goebel R, Yacoub E, Formisano E 2015 Proc. Natl. Acad. Sci. 112 16036Google Scholar

    [74]

    Moerel M, De Martino F, Uǧurbil K, Yacoub E, Formisano E 2019 Sci. Rep. 9 5502Google Scholar

    [75]

    Ahveninen J, Chang W T, Huang S, Keil B, Kopco N, Rossi S, Bonmassar G, Witzel T, Polimeni J R 2016 NeuroImage 143 116Google Scholar

    [76]

    Moerel M, Yacoub E, Gulban O F, Lage-Castellanos A, De Martino F 2021 Prog. Neurobiol. 207 101887Google Scholar

    [77]

    Faes L K, Martino F D, Huber L 2023 PLoS One 18 e0280855Google Scholar

    [78]

    Heynckes M, Lage-Castellanos A, De Weerd P, Formisano E, De Martino F 2023 Curr. Res. Neurobiol. 4 100075Google Scholar

    [79]

    Faes L K, Lage-Castellanos A, Valente G, Yu Z D, Cloos M A, Vizioli L, Moeller S, Yacoub E, De Martino F 2024 Imaging Neurosci. 2 1

    [80]

    Huber L, Handwerker D A, Jangraw D C, Chen G, Hall A, Stüber C, Gonzalez-Castillo J, Ivanov D, Marrett S, Guidi M, Goense J, Poser B A, Bandettini P A 2017 Neuron 96 1253Google Scholar

    [81]

    Yu Y H, Huber L, Yang J J, Jangraw D C, Handwerker D A, Molfese P J, Chen G, Ejima Y, Wu J L, Bandettini P A 2019 Sci. Adv. 5 eaav9053Google Scholar

    [82]

    Persichetti A S, Avery J A, Huber L, Merriam E P, Martin A 2020 Curr. Biol. 30 1721Google Scholar

    [83]

    Yang J J, Huber L, Yu Y H, Bandettini P A 2021 Neurosci. Biobehav. Rev. 128 467Google Scholar

    [84]

    Kalyani A, Contier O, Klemm L, Azañon E, Schreiber S, Speck O, Reichert C, Kuehn E 2023 NeuroImage 283 120430Google Scholar

    [85]

    Huber L, Kassavetis P, Gulban O F, Hallett M, Horovitz S G 2023 Dystonia 2 10806Google Scholar

    [86]

    Finn E S, Huber L, Jangraw D C, Molfese P J, Bandettini P A 2019 Nat. Neurosci. 22 10

    [87]

    Koster R, Chadwick M J, Chen Y, Berron D, Banino A, Düzel E, Hassabis D, Kumaran D 2018 Neuron 99 1342Google Scholar

    [88]

    Maass A, Schütze H, Speck O, Yonelinas A, Tempelmann C, Heinze H J, Berron D, Cardenas-Blanco A, Brodersen K H, Enno Stephan K, Düzel E 2014 Nat. Commun. 5 1

    [89]

    Zhang K H, Chen L Y, Li Y H, Paez A G, Miao X Y, Cao D, Gu C M, Pekar J J, Van Zijl P C M, Hua J, Bakker A 2023 J. Neurosci. 43 2874Google Scholar

    [90]

    Sharoh D, Van Mourik T, Bains L J, Segaert K, Weber K, Hagoort P, Norris D G 2019 Proc. Natl. Acad. Sci. 116 21185Google Scholar

    [91]

    Zhan M, Pallier C, Agrawal A, Dehaene S, Cohen L 2023 Sci. Adv. 9 eadf6140Google Scholar

    [92]

    Margalit E, Jamison K W, Weiner K S, Vizioli L, Zhang R Y, Kay K N, Grill-Spector K 2020 J. Neurosci. 40 3008Google Scholar

    [93]

    Gau R, Bazin P L, Trampel R, Turner R, Noppeney U 2020 eLife 9 e46856Google Scholar

    [94]

    Finn E S, Huber L, Bandettini P A 2021 Prog. Neurobiol. 207 101930Google Scholar

    [95]

    Van Dijk J A, Fracasso A, Petridou N, Dumoulin S O 2021 Curr. Biol. 31 4635Google Scholar

    [96]

    Deshpande G, Wang Y, Robinson J 2022 Brain Inform. 9 2Google Scholar

    [97]

    Deshpande G, Zhao X, Robinson J 2022 NeuroImage 254 119078Google Scholar

    [98]

    Chai Y H, Morgan A T, Handwerker D A, Li L Q, Huber L, Sutton B P, Bandettini P A 2024 Imaging Neurosci. 2 1

    [99]

    Rajimehr R, Xu H, Farahani A, Kornblith S, Duncan J, Desimone R 2024 Neuron 112 4130Google Scholar

    [100]

    Polimeni J R, Renvall V, Zaretskaya N, Fischl B 2018 NeuroImage 168 296Google Scholar

    [101]

    Kashyap S, Ivanov D, Havlicek M, Poser B A, Uludaǧ K 2018 NeuroImage 168 332Google Scholar

    [102]

    Yun S D, Küppers F, Shah N J 2024 J. Magn. Reson. Imaging 59 747Google Scholar

    [103]

    Vizioli L, Moeller S, Dowdle L, Akçakaya M, De Martino F, Yacoub E, Uǧurbil K 2021 Nat. Commun. 12 1Google Scholar

    [104]

    Iyyappan Valsala P, Veldmann M, Bosch D, Scheffler K, Ehses P 2024 Magn. Reson. Med. 92 186Google Scholar

    [105]

    Knudsen L, Bailey C J, Blicher J U, Yang Y, Zhang P, Lund T E 2023 NeuroImage 271 120011Google Scholar

    [106]

    Demirel Ö B, Moeller S, Vizioli L, Yaman B, Dowdle L, Yacoub E, Uǧurbil K, Akçakaya M 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER) Baltimore, MD, USA, April 24—27, 2023 p1

    [107]

    Lawrence S J D, Formisano E, Muckli L, De Lange F P 2019 NeuroImage 197 785Google Scholar

    [108]

    McColgan P, Joubert J, Tabrizi S J, Rees G 2020 Nat. Rev. Neurosci. 21 8

    [109]

    Schreiber S, Northall A, Weber M, Vielhaber S, Kuehn E 2021 Nat. Rev. Neurosci. 22 68

    [110]

    Kwong K K, Belliveau J W, Chesler D A, Goldberg I E, Weisskoff R M, Poncelet B P, Kennedy D N, Hoppel B E, Cohen M S, Turner R 1992 Proc. Natl. Acad. Sci. 89 5675Google Scholar

    [111]

    Shao X F, Guo F H, Shou Q Y, Wang K, Jann K, Yan L R, Toga A W, Zhang P, Wang D J J 2021 NeuroImage 245 118724Google Scholar

    [112]

    Buxton R B 2005 J. Magn. Reson. Imaging 22 723Google Scholar

    [113]

    Lu H, Golay X, Pekar J J, Van Zijl P C M 2003 Magn. Reson. Med. 50 263Google Scholar

    [114]

    Davis T L, Kwong K K, Weisskoff R M, Rosen B R 1998 Proc. Natl. Acad. Sci. 95 1834Google Scholar

    [115]

    Hoge R D, Atkinson J, Gill B, Crelier G R, Marrett S, Pike G B 1999 Magn. Reson. Med. 42 849Google Scholar

    [116]

    Kim S G, Rostrup E, Larsson H B W, Ogawa S, Paulson O B 1999 Magn. Reson. Med. 41 1152Google Scholar

    [117]

    Huber L, Uludaǧ K, Möller H E 2019 NeuroImage 197 742Google Scholar

    [118]

    Logothetis N K 2008 Nature 453 869Google Scholar

    [119]

    Polimeni J R, Lewis L D 2021 Prog. Neurobiol. 207 102174Google Scholar

    [120]

    Jasanoff A 2007 Trends Neurosci. 30 603Google Scholar

    [121]

    Uǧurbil K, Toth L, Kim D S 2003 Trends Neurosci. 26 108Google Scholar

    [122]

    Uludaǧ K, Havlicek M 2021 Prog. Neurobiol. 207 102055Google Scholar

    [123]

    O’Herron P, Chhatbar P Y, Levy M, Shen Z, Schramm A E, Lu Z, Kara P 2016 Nature 534 378Google Scholar

    [124]

    Menon R S, Kim S G 1999 Trends Cogn. Sci. 3 207Google Scholar

    [125]

    Bandettini P A, Petridou N, Bodurka J 2005 Appl. Magn. Reson. 29 65Google Scholar

    [126]

    Bodurka J, Bandettini P A 2002 Magn. Reson. Med. 47 1052Google Scholar

    [127]

    Luo Q, Gao J H 2010 Magn. Reson. Med. 64 1832Google Scholar

    [128]

    Xiong J, Fox P T, Gao J H 2003 Hum. Brain Mapp. 20 41Google Scholar

    [129]

    Luo Q F, Lu H, Lu H B, Senseman D, Worsley K, Yang Y H, Gao J H 2009 NeuroImage 47 1268Google Scholar

    [130]

    Jiang X, Lu H, Shigeno S, Tan L H, Yang Y H, Ragsdale C W, Gao J H 2014 Magn. Reson. Med. 72 1311Google Scholar

    [131]

    Chai Y H, Bi G Q, Wang L P, Xu F Q, Wu R Q, Zhou X, Qiu B S, Lei H, Zhang Y Y, Gao J H 2016 NeuroImage 125 533Google Scholar

    [132]

    Jiang X, Sheng J W, Li H J, Chai Y H, Zhou X, Wu B, Guo X D, Gao J H 2016 Magn. Reson. Med. 75 519Google Scholar

    [133]

    Kamei H, Iramina K, Yoshikawa K, Ueno S 1999 IEEE Trans. Magn. 35 4109Google Scholar

    [134]

    Bianciardi M, Di Russo F, Aprile T, Maraviglia B, Hagberg G E 2004 Magn. Reson. Imaging 22 1429Google Scholar

    [135]

    Konn D, Gowland P, Bowtell R 2003 Magn. Reson. Med. 50 40Google Scholar

    [136]

    Liston A D, Salek-Haddadi A, Kiebel S J, Hamandi K, Turner R, Lemieux L 2004 Magn. Reson. Imaging 22 1441Google Scholar

    [137]

    Chow L S, Cook G G, Whitby E, Paley M N J 2006 NeuroImage 30 835Google Scholar

    [138]

    Chow L S, Dagens A, Fu Y, Cook G G, Paley M N J 2008 Magn. Reson. Med. 60 1147Google Scholar

    [139]

    Xue Y Q, Chen X Y, Grabowski T, Xiong J H 2009 Magn. Reson. Med. 61 1073Google Scholar

    [140]

    Singh M 1994 IEEE Trans. Nucl. Sci. 41 349Google Scholar

    [141]

    Chu R, De Zwart J A, Van Gelderen P, Fukunaga M, Kellman P, Holroyd T, Duyn J H 2004 NeuroImage 23 1059Google Scholar

    [142]

    Parkes L M, De Lange F P, Fries P, Toni I, Norris D G 2007 Magn. Reson. Med. 57 411Google Scholar

    [143]

    Mandelkow H, Halder P, Brandeis D, Soellinger M, De Zanche N, Luechinger R, Boesiger P 2007 NeuroImage 37 149Google Scholar

    [144]

    Tang L, Avison M J, Gatenby J C, Gore J C 2008 Magn. Reson. Imaging 26 484Google Scholar

    [145]

    Luo Q F, Jiang X, Chen B, Zhu Y, Gao J H 2011 Magn. Reson. Med. 65 1680Google Scholar

    [146]

    Toi P T, Jang H J, Min K, Kim S P, Lee S K, Lee J, Kwag J, Park J Y 2022 Science 378 160Google Scholar

    [147]

    Silva A C, Koretsky A P 2002 Proc. Natl. Acad. Sci. 99 15182Google Scholar

    [148]

    Yu X, Qian C Q, Chen D Y, Dodd S J, Koretsky A P 2014 Nat. Methods 11 55Google Scholar

    [149]

    Yu X, He Y, Wang M S, Merkle H, Dodd S J, Silva A C, Koretsky A P 2016 Nat. Methods 13 337Google Scholar

    [150]

    Hodono S, Rideaux R, Van Kerkoerle T, Cloos M A 2023 Imaging Neurosci. 1 1

    [151]

    Choi S H, Im G H, Choi S, Yu X, Bandettini P A, Menon R S, Kim S G 2024 Sci. Adv. 10 eadl0999Google Scholar

    [152]

    Phi Van V D, Sen S, Jasanoff A 2024 Sci. Adv. 10 eadl2034Google Scholar

    [153]

    Wilson J M, Wu H, Kerr A B, Wandell B A, Gardner J L 2024 Imaging Neurosci. 2 1

    [154]

    Kwon D 2023 Nature 617 640Google Scholar

    [155]

    Thorp H H 2023 Science 381 1058

    [156]

    Henning A 2018 NeuroImage 168 181Google Scholar

    [157]

    Godlewska B R, Clare S, Cowen P J, Emir U E 2017 Front. Psychiatry 8 123Google Scholar

    [158]

    Öz G, Tkáč I 2011 Magn. Reson. Med. 65 901Google Scholar

    [159]

    Biria M, Banca P, Healy M P, Keser E, Sawiak S J, Rodgers C T, Rua C, De Souza A M F L P, Marzuki A A, Sule A, Ersche K D, Robbins T W 2023 Nat. Commun. 14 3324Google Scholar

    [160]

    Jia K, Wang M, Steinwurzel C, Ziminski J J, Xi Y, Emir U, Kourtzi Z 2024 Sci. Adv. 10 eado7378Google Scholar

    [161]

    Bednařík P, Tkáč I, Giove F, DiNuzzo M, Deelchand D K, Emir U E, Eberly L E, Mangia S 2015 J. Cereb. Blood Flow Metab. 35 601Google Scholar

    [162]

    Bednařík P, Tkáč I, Giove F, Eberly L E, Deelchand D K, Barreto F R, Mangia S 2018 J. Cereb. Blood Flow Metab. 38 347Google Scholar

    [163]

    Ip I B, Berrington A, Hess A T, Parker A J, Emir U E, Bridge H 2017 NeuroImage 155 113Google Scholar

    [164]

    Maudsley A A, Hilal S K, Perman W H, Simon H E 1983 J. Magn. Reson. 51 147

    [165]

    Hingerl L, Strasser B, Moser P, Hangel G, Motyka S, Heckova E, Gruber S, Trattnig S, Bogner W 2020 Invest. Radiol. 55 239Google Scholar

    [166]

    Bednarik P, Goranovic D, Svatkova A, Niess F, Hingerl L, Strasser B, Deelchand D K, Spurny-Dworak B, Krssak M, Trattnig S, Hangel G, Scherer T, Lanzenberger R, Bogner W 2023 Nat. Biomed. Eng. 7 1001Google Scholar

    [167]

    Rata M, Giles S L, DeSouza N M, Leach M O, Payne G S 2014 NMR Biomed. 27 158Google Scholar

    [168]

    Nagel A M, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad L R, Weber M A 2011 Invest. Radiol. 46 759Google Scholar

    [169]

    Santos-Díaz A, Noseworthy M D 2020 Biomed. Signal Process. Control 60 101967Google Scholar

    [170]

    Chen W, Zhu X H, Adriany G, Uǧurbil K 1997 Magn. Reson. Med. 38 551Google Scholar

    [171]

    Bogner W, Chmelik M, Andronesi O C, Sorensen A G, Trattnig S, Gruber S 2011 Magn. Reson. Med. 66 923Google Scholar

    [172]

    Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K 2016 Magn. Reson. Mater. Phys. Biol. Med. 29 579Google Scholar

    [173]

    Madelin G, Regatte R R 2013 J. Magn. Reson. Imaging 38 511Google Scholar

    [174]

    Madelin G, Lee J S, Regatte R R, Jerschow A 2014 Prog. Nucl. Magn. Reson. Spectrosc. 79 14Google Scholar

    [175]

    Rooney W D, Springer Jr C S 1991 NMR Biomed. 4 209Google Scholar

    [176]

    Hoesl M A U, Schad L R, Rapacchi S 2020 Magn. Reson. Med. 84 2412Google Scholar

    [177]

    Platt T, Ladd M E, Paech D 2021 Invest. Radiol. 56 705Google Scholar

    [178]

    Ra J B, Hilal S K, Oh C H, Mun I K 1988 Magn. Reson. Med. 7 11Google Scholar

    [179]

    Kraff O, Fischer A, Nagel A M, Mönninghoff C, Ladd M E 2015 J. Magn. Reson. Imaging 41 13Google Scholar

    [180]

    Nagel A M, Laun F B, Weber M A, Matthies C, Semmler W, Schad L R 2009 Magn. Reson. Med. 62 1565Google Scholar

    [181]

    Pipe J G, Zwart N R, Aboussouan E A, Robison R K, Devaraj A, Johnson K O 2011 Magn. Reson. Med. 66 1303Google Scholar

    [182]

    Licht C, Reichert S, Guye M, Schad L R, Rapacchi S 2024 Magn. Reson. Med. 91 926Google Scholar

    [183]

    Wiggins G C, Brown R, Lakshmanan K 2016 NMR Biomed. 29 96Google Scholar

    [184]

    Bangerter N K, Kaggie J D, Taylor M D, Hadley J R 2016 NMR Biomed. 29 107Google Scholar

    [185]

    Thulborn K R 2018 NeuroImage 168 250Google Scholar

    [186]

    Nunes Neto L P, Madelin G, Sood T P, Wu C C, Kondziolka D, Placantonakis D, Golfinos J G, Chi A, Jain R 2018 Neuroradiology 60 795Google Scholar

    [187]

    Regnery S, Behl N G R, Platt T, Weinfurtner N, Windisch P, Deike-Hofmann K, Sahm F, Bendszus M, Debus J, Ladd M E, Schlemmer H P, Rieken S, Adeberg S, Paech D 2020 NeuroImage Clin. 28 102427Google Scholar

    [188]

    Haeger A, Coste A, Lerman-Rabrait C, Lagarde J, Schulz J B, Vignaud A, Sarazin M, Bottlaender M, Reetz K, Romanzetti S, Boumezbeur F 2020 Alzheimers Dement. 16 e042107Google Scholar

    [189]

    Stobbe R, Boyd A, Smyth P, Emery D, Valdés Cabrera D, Beaulieu C 2021 Front. Neurol. 12 693447Google Scholar

    [190]

    Wilferth T, Mennecke A, Gast L V, Lachner S, Müller M, Rothhammer V, Huhn K, Uder M, Doerfler A, Nagel A M, Schmidt M 2022 NMR Biomed. 35 e4806Google Scholar

    [191]

    Katscher U, Börnert P, Leussler C, Van Den Brink J S 2003 Magn. Reson. Med. 49 144Google Scholar

    [192]

    Zhu Y 2004 Magn. Reson. Med. 51 775Google Scholar

    [193]

    Grissom W, Yip C, Zhang Z, Stenger V A, Fessler J A, Noll D C 2006 Magn. Reson. Med. 56 620Google Scholar

    [194]

    Gras V, Vignaud A, Amadon A, Le Bihan D, Boulant N 2017 Magn. Reson. Med. 77 635Google Scholar

    [195]

    Fiedler T M, Ladd M E, Bitz A K 2018 NeuroImage 168 33Google Scholar

    [196]

    Jezzard P, Clare S 1999 Hum. Brain Mapp. 8 80Google Scholar

    [197]

    Setsompop K, Feinberg D A, Polimeni J R 2016 NMR Biomed. 29 1198Google Scholar

    [198]

    Stockmann J P, Wald L L 2018 NeuroImage 168 71Google Scholar

    [199]

    Bates S, Dumoulin S O, Folkers P J M, Formisano E, Goebel R, Haghnejad A, Helmich R C, Klomp D, Van Der Kolk A G, Li Y, Nederveen A, Norris D G, Petridou N, Roell S, Scheenen T W J, Schoonheim M M, Voogt I, Webb A 2023 Magn. Reson. Mater. Phys. Biol. Med. 36 211Google Scholar

    [200]

    Winter L, Niendorf T 2016 Magn. Reson. Mater. Phys. Biol. Med. 29 641Google Scholar

  • [1] Wei Qian-Yi, Ni Jie-Lei, Li Ling, Zhang Yu-Quan, Yuan Xiao-Cong, Min Chang-Jun. Research progress of ultra-high spatiotemporally resolved microscopy. Acta Physica Sinica, doi: 10.7498/aps.72.20230733
    [2] Xiang Peng-Cheng, Cai Cong-Bo, Wang Jie-Chao, Cai Shu-Hui, Chen Zhong. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Acta Physica Sinica, doi: 10.7498/aps.71.20211754
    [3] Liu Liang-You, Gao Song, Li Sha, Li Zhao-Tong, Xia Yi-Fan. Research progress of diffusion sensitive gradient field encoding schemes in magnetic resonance diffusion tensor imaging. Acta Physica Sinica, doi: 10.7498/aps.69.20191346
    [4] Study of Multiscale Entropy Model to Evaluate the Cognitive Behavior of Healthy Elderly People Based on Resting State Functional Magnetic Resonance Imaging. Acta Physica Sinica, doi: 10.7498/aps.69.20200051
    [5] Zhang Fu-Yi, Ge Man-Ling, Guo Zhi-Tong, Xie Chong, Yang Ze-Kun, Song Zi-Bo. Study of multiscale entropy model to evaluate the cognitive behavior of healthy elderly people based on resting state functional magnetic resonance imaging. Acta Physica Sinica, doi: 10.7498/aps.69.20200050
    [6] Du Xiao-Ji, Wang Wei-Min, Lan Xian-Hui, Li Chao. Design, fabrication and test of superconducting magnet for 1.5 T dedicated extremity magnetic resonance imaging system. Acta Physica Sinica, doi: 10.7498/aps.66.248401
    [7] Yang Xiao-Jing, Yang Yang, Li Huai-Zhou, Zhong Ning. Analysis of resting state functional magnetic resonance imaging signal complexity of adult major depressive disorder based on fuzzy approximate entropy. Acta Physica Sinica, doi: 10.7498/aps.65.218701
    [8] Hu Yang, Wang Qiu-Liang, Li Yi, Zhu Xu-Chen, Niu Chao-Qun. Optimization of magnetic resonance imaging high-order axial shim coils using boundary element method. Acta Physica Sinica, doi: 10.7498/aps.65.218301
    [9] Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials. Acta Physica Sinica, doi: 10.7498/aps.64.174201
    [10] Gao Song, Zhu Yan-Chun, Li Shuo, Bao Shang-Lian. An optimal direction strategy of diffusion sensitive gradient mangnetic fields in magnetic resonance diffusion tensor imaging based on generalized Fibonacci sequence. Acta Physica Sinica, doi: 10.7498/aps.63.048704
    [11] Fang Sheng, Wu Wen-Chuan, Ying Kui, Guo Hua. A new fast magnetic resonance imaging method based on variabledensity spiral data acquisition and Bregman iterative reconstruction. Acta Physica Sinica, doi: 10.7498/aps.62.048702
    [12] Bao Shang-Lian, Du Jiang, Gao Song. Review of the ultrashort echo time magnetic resonance imaging of cortical bone. Acta Physica Sinica, doi: 10.7498/aps.62.088701
    [13] Ni Zhi-Peng, Wang Qiu-Liang, Yan Lu-Guang. A hybrid optimization approach to design of compact self-shielded super conducting magnetic resonance imaging magnet system. Acta Physica Sinica, doi: 10.7498/aps.62.020701
    [14] Liu Tie-Bing, Yao Wen-Po, Ning Xin-Bao, Ni Huang-Jing, Wang Jun. The base scale entropy analysis of fMRI. Acta Physica Sinica, doi: 10.7498/aps.62.218704
    [15] Zhang Guo-Qing, Du Xiao-Ji, Zhao Ling, Ning Fei-Peng, Yao Wei-Chao, Zhu Zi-An. 0—1 integer linear programming for actively shielded magnetic resonance image (MRI) superconducting magnet design. Acta Physica Sinica, doi: 10.7498/aps.61.228701
    [16] Wang Ning, Jin Yi-Rong, Deng Hui, Wu Yu-Lin, Zheng Guo-Lin, Li Shao, Tian Ye, Ren Yu-Feng, Chen Ying-Fei, Zheng Dong-Ning. Ultra-low field magnetic resonance imaging based on high Tc dc-SQUID. Acta Physica Sinica, doi: 10.7498/aps.61.213302
    [17] Xu Ling-Feng, Yu Jie, Huang Qing-Ming, Huang Yong, Wang Xiao-Yan, Lu Lun, Wang Hong-Zhi, Zhang Xue-Long, Cheng Hong-Yan, Li Geng-Ying, Wang He. Phantom study of the classification of liver fibrosis based on nuclear magnetic resonance elasto-graphy. Acta Physica Sinica, doi: 10.7498/aps.59.7463
    [18] Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Liu Shen-Ye, Ding Yong-Kun. A multiple monochromatic X-ray imaging spectrometer based on flat Bragg mirror. Acta Physica Sinica, doi: 10.7498/aps.58.6397
    [19] Zhu Pei-Ping, Yuan Qing-Xi, Huang Wan-Xia, Wang Jun-Yue, Shu Hang, Wu Zi-Yu, Xian Ding-Chang. Principles of X-ray diffraction enhanced imaging. Acta Physica Sinica, doi: 10.7498/aps.55.1089
    [20] Zhang Bi-Da, Wang Wei-Dong, Song Xiao-Yu, Zu Dong-Lin, Lü Hong-Yu, Bao Shang-Lian. The application of modern radio-frequency excitation theory in nonhomogeneous fi eld magnetic resonance imaging. Acta Physica Sinica, doi: 10.7498/aps.52.1143
Metrics
  • Abstract views:  389
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  13 December 2024
  • Accepted Date:  24 January 2025
  • Available Online:  17 February 2025

/

返回文章
返回
Baidu
map