搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用超导量子电路模拟拓扑量子材料

喻祥敏 谭新生 于海峰 于扬

引用本文:
Citation:

利用超导量子电路模拟拓扑量子材料

喻祥敏, 谭新生, 于海峰, 于扬

Topological quantum material simulated with superconducting quantum circuits

Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang
PDF
导出引用
  • 近年来,探索新的拓扑量子材料、研究拓扑材料的新奇物理性质成为凝聚态物理领域的一个热点.但是,由于合成、测量等手段的限制,人们难以在真实材料中实现和观测很多理论预言的材料及其物理性质,促使量子模拟日益成为研究量子多体系统的一个重要手段.作为全固态器件,超导量子电路是一个在扩展性、集成性、调控性上都具有巨大优势的人工量子系统,是实现量子模拟的重要方案.本文总结了利用超导量子电路对时间-空间反演对称性保护的拓扑半金属、Hopf-link半金属和Maxwell半金属等拓扑材料的量子模拟,显示出超导量子电路在模拟凝聚态物理系统方面具有广阔前景.
    During the past decades, the exploration of new topological material and the study of their novel physical properties have become a hot topic in condensed matter physics. However, it is hard to realize various topological materials and observe their physical properties that have been predicted theoretically due to the limitation of experimental techniques, such as fabrication, parameter control, and measurement. This situation makes quantum simulation a way alternative to simulating large quantum systems. In general, quantum simulation can be implemented by some controllable quantum systems. As a kind of all-solid state device, superconducting quantum circuit is an artificial quantum system that has great advantage in scalability, integration, and controllability, which provides an important scheme to realize the quantum simulator. In this paper, we review our recent results of quantum simulation in the space-time inversion symmetry protected topological semimetal bands, Hopf-link semimetal bands, and topological Maxwell metal bands with superconducting quantum circuits. These results show that the superconducting circuit is a promising system for simulating the quantum many-body system in condensed matter physics.
      通信作者: 于海峰, hfyu@nju.edu.cn;yuyang@nju.edu.cn ; 于扬, hfyu@nju.edu.cn;yuyang@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301802)和国家自然科学基金(批准号:11274156,11504165,11474152,61521001)资助的课题.
      Corresponding author: Yu Hai-Feng, hfyu@nju.edu.cn;yuyang@nju.edu.cn ; Yu Yang, hfyu@nju.edu.cn;yuyang@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos. 11274156, 11504165, 11474152, 61521001).
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467

    [2]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [3]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nature Phys. 9 795

    [4]

    Houck A, Tureci H, Koch J 2012 Nature Phys. 8 292

    [5]

    You J, Nori F 2011 Nature 474 589

    [6]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501

    [7]

    Georgescu I, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [8]

    Lloyd S 1996 Science 273 1073

    [9]

    Buluta I, Nori F 2009 Science 326 108

    [10]

    Cirac J, Zoller P 2012 Nature Phys. 8 264

    [11]

    Reed M D 2013 Ph. D Dissertation (New Haven: Yale University)

    [12]

    Girvin S M, Devoret M H, Schoelkopf R J 2009 Phys. Scri. T137 014012

    [13]

    Schuster D I 2007 Ph. D Dissertation (New Haven: Yale University)

    [14]

    Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601

    [15]

    Li J, Paraoanu G S, Cicak K, Altomare F, Park J I, Simonds R W, Sillanpaa M A, Hakonen P J 2012 Sci. Rep. 2 645

    [16]

    Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Daniel K L, Vedral V 2000 J. Mod. Optic 47 2501

    [17]

    Aidelsburger M,Lohse M,Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I, Goldman N 2015 Nature Phys. 11 162

    [18]

    Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J 2007 Science 318 1889

    [19]

    Yuan X X, He L, Wang S T, Deng D L, Wang F, Lian W Q, Wang X, Zhang C H, Zhang H L, Chang X Y, Duan M L 2017 Chin. Phys. Lett. 34 060302

    [20]

    Deng D L, Wang S T, Sun K, Duan M L 2018 Chin. Phys. Lett. 35 013701

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [22]

    Zhao Y X, Schnyder A P, Wang Z D 2016 Phys. Rev. Lett. 116 156402

    [23]

    Tan X S, Zhao Y X, Liu Q, Xue G M, Yu H F, Yu Y 2017 npj Quantum Mater. 2 60

    [24]

    Chen W, Lu H Z, Hou J M 2017 Phys. Rev. B 96 041102

    [25]

    Chang P Y, Yee C H 2017 Phys. Rev. B 96 081114

    [26]

    Tan X S, Li M M, Li D Y, Dai K Z, Yu H F, Yu Y 2018 Appl. Phys. Lett. 112 172601

    [27]

    Yan Z B, Bi R, Shen H T, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103

    [28]

    Abanin D A, Kitagawa T, Bloch I, Demler E 2013 Phys. Rev. Lett. 110 165304

    [29]

    Xiao D, Chang M, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [30]

    Bradlyn B, Cano J, Wang Z J, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 5037

    [31]

    Stone M 2016 Int. J. Mod. Phys. B 30 1550249

    [32]

    Zhu Y Q, Zhang D W, Yan H, Xing D Y, Zhu S L 2018 ArXiv:1610.05993 [cond-mat. quant-gas]

    [33]

    Tan X S, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu S L, Yu Y 2018 Phys. Rev. Lett. 120 130503

    [34]

    Gritsev V, Polkovnikov A 2012 Proc. Natl Acad. Sci. USA 109 6457

    [35]

    Roushan P, Neill C, Chen Y, Kolodrubetz M, Quintana C, Leung N, Fang M, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Mutus J, O’Malley P, Sank D, Vainsencher A, Wenner J, White T, Polkovnikov A, Cleland A N, Martinis J M 2014 Nature 515 241

  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467

    [2]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [3]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nature Phys. 9 795

    [4]

    Houck A, Tureci H, Koch J 2012 Nature Phys. 8 292

    [5]

    You J, Nori F 2011 Nature 474 589

    [6]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501

    [7]

    Georgescu I, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153

    [8]

    Lloyd S 1996 Science 273 1073

    [9]

    Buluta I, Nori F 2009 Science 326 108

    [10]

    Cirac J, Zoller P 2012 Nature Phys. 8 264

    [11]

    Reed M D 2013 Ph. D Dissertation (New Haven: Yale University)

    [12]

    Girvin S M, Devoret M H, Schoelkopf R J 2009 Phys. Scri. T137 014012

    [13]

    Schuster D I 2007 Ph. D Dissertation (New Haven: Yale University)

    [14]

    Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L, Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601

    [15]

    Li J, Paraoanu G S, Cicak K, Altomare F, Park J I, Simonds R W, Sillanpaa M A, Hakonen P J 2012 Sci. Rep. 2 645

    [16]

    Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Daniel K L, Vedral V 2000 J. Mod. Optic 47 2501

    [17]

    Aidelsburger M,Lohse M,Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I, Goldman N 2015 Nature Phys. 11 162

    [18]

    Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J 2007 Science 318 1889

    [19]

    Yuan X X, He L, Wang S T, Deng D L, Wang F, Lian W Q, Wang X, Zhang C H, Zhang H L, Chang X Y, Duan M L 2017 Chin. Phys. Lett. 34 060302

    [20]

    Deng D L, Wang S T, Sun K, Duan M L 2018 Chin. Phys. Lett. 35 013701

    [21]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [22]

    Zhao Y X, Schnyder A P, Wang Z D 2016 Phys. Rev. Lett. 116 156402

    [23]

    Tan X S, Zhao Y X, Liu Q, Xue G M, Yu H F, Yu Y 2017 npj Quantum Mater. 2 60

    [24]

    Chen W, Lu H Z, Hou J M 2017 Phys. Rev. B 96 041102

    [25]

    Chang P Y, Yee C H 2017 Phys. Rev. B 96 081114

    [26]

    Tan X S, Li M M, Li D Y, Dai K Z, Yu H F, Yu Y 2018 Appl. Phys. Lett. 112 172601

    [27]

    Yan Z B, Bi R, Shen H T, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103

    [28]

    Abanin D A, Kitagawa T, Bloch I, Demler E 2013 Phys. Rev. Lett. 110 165304

    [29]

    Xiao D, Chang M, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [30]

    Bradlyn B, Cano J, Wang Z J, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 5037

    [31]

    Stone M 2016 Int. J. Mod. Phys. B 30 1550249

    [32]

    Zhu Y Q, Zhang D W, Yan H, Xing D Y, Zhu S L 2018 ArXiv:1610.05993 [cond-mat. quant-gas]

    [33]

    Tan X S, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu S L, Yu Y 2018 Phys. Rev. Lett. 120 130503

    [34]

    Gritsev V, Polkovnikov A 2012 Proc. Natl Acad. Sci. USA 109 6457

    [35]

    Roushan P, Neill C, Chen Y, Kolodrubetz M, Quintana C, Leung N, Fang M, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Mutus J, O’Malley P, Sank D, Vainsencher A, Wenner J, White T, Polkovnikov A, Cleland A N, Martinis J M 2014 Nature 515 241

  • [1] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究.  , 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] 关欣, 陈刚. 双链超导量子电路中的拓扑非平庸节点.  , 2023, 72(14): 140301. doi: 10.7498/aps.72.20230152
    [5] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合.  , 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [6] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展.  , 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [7] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展.  , 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [8] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟.  , 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [9] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展.  , 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [10] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制.  , 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [11] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建.  , 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [13] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展.  , 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [14] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究.  , 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [15] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展.  , 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [16] 范桁. 量子计算与量子模拟.  , 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠.  , 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [18] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变.  , 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [19] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态.  , 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [20] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应.  , 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
计量
  • 文章访问数:  8831
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2018-11-16
  • 刊出日期:  2019-11-20

/

返回文章
返回
Baidu
map