-
Ion trap system is one of the main quantum systems to realize quantum computation and simulation. Various ion trap research groups worldwide jointly drive the continuous enrichment of ion trap structures, and develop a series of high-performance three-dimensional ion trap, two-dimensional ion trap chip, and ion traps with integrated components. The structure of ion trap is gradually developing towards miniaturization, high-optical-access and integration, and is demonstrating its outstanding ability in quantum control. Ion traps are able to trap increasingly more ions and precisely manipulate the quantum state of the system. In this review, we will summarize the evolution history of the ion trap structures in the past few decades, as well as the latest advances of trapped-ion-based quantum computation and simulation. Here we present a selection of representative examples of trap structures. We will summarize the progresses in the processing technology, robustness and versatility of ion traps, and make prospects for the realization of scalable quantum computation and simulation based on ion trap system.
-
Keywords:
- ion trap system /
- quantum computation /
- quantum simulation /
- quantum hardware
[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467
Google Scholar
[2] Shor P W 1994 Proceedings of the 35th Annual IEEE Symposium on Foundation of Computer Science 124 134
[3] Nielsen M A, Chuang I 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p19
[4] Paul W and Steinwedel H 1953 Z Naturforsch A. 8 448
Google Scholar
[5] Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53
[6] [7] Schwartz J C, Senko M W, Syka J 2002 J. Am. Soc. Mass. Spectrom. 13 659
Google Scholar
[8] Bollinger J J, Heinzen D J, Itano W M, Gilbert S L, Wineland D J 1990 Conference on Precision Electromagnetic Measurements Ottawa, ON, Canada, June 11–14 1990 p264
[9] Fisk P T H, Sellars M J, Lawn M A, Coles G 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 344
Google Scholar
[10] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808
Google Scholar
[11] Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001
Google Scholar
[12] Keller J, Burgermeister T, Kalincev D, Kiethe J, Mehlstubler T E 2016 J. Phys. Conf. Ser. 723 p012027
[13] Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630
Google Scholar
[14] Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 J. Phys. B: At. Mol. Opt. Phys. 36 613
Google Scholar
[15] Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Eschner J, Schmidt-Kaler F, and Blatt R 2004 Phys. Rev. Lett. 92 203002
Google Scholar
[16] Barros H G, Stute A, Northup T E, Russo C, Schmidt P O, Blatt R 2009 New J. Phys. 11 103004
Google Scholar
[17] Takahashi H, Wilson A, Riley-Watson A, Oruevi F, Seymour-Smith N, Keller M, Lange W 2013 New J. Phys. 15 053011
Google Scholar
[18] Odom B, Hanneke D, D’Urso B, Gabrielse G 2006 Phys. Rev. Lett. 97 030801
Google Scholar
[19] Porras D, Cirac J I 2004 Phys. Rev. Lett. 92 207901
Google Scholar
[20] Porras D, Cirac J I 2006 Phys. Rev. Lett. 96 250501
Google Scholar
[21] Islam R, Senko C, Campbell W C, Korenblit S, Smith J, Lee A, Edwards E E, Wang C C, Freericks J K, Monroe C 2013 Science 340 583
Google Scholar
[22] Mller M, Schindler P, Nigg D, Monz T, Barreiro J, Martinez E, Hennrich M, Diehl S, Zoller P, Blatt R 2013 Nat. Phys. 9 361
Google Scholar
[23] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601
Google Scholar
[24] Neyenhuis B, Zhang J, Hess P W, Smith J, Lee A C, Richerme P, Gong Z X, Gorshkov A V, Monroe C 2017 Sci. Adv. 3 e1700672
[25] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091
Google Scholar
[26] Milburn G J, Schneider S, James D F V 2000 Fortschr. Phys. 48 801
Google Scholar
[27] Sørensen A, Mølmer K 2000 Phys. Rev. A 62 022311
Google Scholar
[28] Duan L M 2004 Phys. Rev. Lett. 93 100502
Google Scholar
[29] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Nat. Inst. Stand. Technol. 103 259
Google Scholar
[30] Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63
Google Scholar
[31] Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M, Kim J 2014 Phys. Rev. A 89 022317
Google Scholar
[32] NIST Penning Traps 2022 https://www.nist.gov/pml/time-and-frequency-division/ion-storage/penning-traps[2022-1-25]
[33] Dilling J, Blaum K, Brodeur M, Eliseev S 2018 Annu. Rev. Nucl. Part. Sci. 68 45
[34] Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639
Google Scholar
[35] Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403
Google Scholar
[36] Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281
Google Scholar
[37] Harty T P, Allcock D, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N, Lucas D M 2014 Phys. Rev. Lett 113 220501
Google Scholar
[38] Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504
Google Scholar
[39] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, Wineland D J 2016 Phys. Rev. Lett. 117 060505
Google Scholar
[40] Clark C R, Tinkey H N, Sawyer B C, Meier A M, Burkhardt K A, Seck C M, Shappert C M, Guise N D, Volin C E, Fallek S D, Hayden H T, Rellergert W G, Brown K R 2021 Phys. Rev. Lett. 127 130505
Google Scholar
[41] Srinivas R, Burd S, Knaack H, Sutherland R, Kwiatkowski A, Glancy S, Knill E, Wineland D, Leibfried D, Wilson A, Allcock D, Slichter D 2021 Nature 597 209
Google Scholar
[42] Wang P, Luan C-Y, Qiao M, Um M, Junhua Z, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 1
[43] Pogorelov I, Feldker T, Marciniak C D, Postler L, Jacob G, Krieglsteiner O, Podlesnic V, Meth M, Negnevitsky V, Stadler M, Höfer B, Wächter C, Lakhmanskiy K, Blatt R, Schindler P, Monz T 2021 PRX Quantum 2 020343
Google Scholar
[44] Wright K, Beck K, Debnath S, Amini J, Nam Y, Grzesiak N, Chen J-S, Pisenti N, Chmielewski M, Collins C, Hudek K, Mizrahi J, Wong-Campos J, Allen S, Apisdorf J, Solomon P, Williams M, Ducore A, Blinov A, Kim J 2019 Nat. Commun. 10 5464
Google Scholar
[45] Knill E, Laflamme R 1997 Phys. Rev. A 55 900
Google Scholar
[46] Aharonov D, Ben-Or M 2008 SIAM J. Comput. 38 1207
Google Scholar
[47] Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316
Google Scholar
[48] Egan L, Debroy D, Noel C, Risinger A, Zhu D, Biswas D, Newman M, Li M, Brown K, Cetina M, Monroe C 2021 Nature 598 281
Google Scholar
[49] Ryan-Anderson C, Bohnet J G, Lee K, Gresh D, Hankin A, Gaebler J P, Francois D, Chernoguzov A, Lucchetti D, Brown N C, Gatterman T M, Halit S K, Gilmore K, Gerber J A, Neyenhuis B, Hayes D, Stutz R P 2021 Phys. Rev. X 11 041058
Google Scholar
[50] Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153
Google Scholar
[51] Blatt R, Roos C F 2012 Nat. Phys. 8 277
Google Scholar
[52] Lanyon B P, Hempel C, Nigg D, Muller M, Gerritsma R, Zahringer F, Schindler P, Barreiro J T, Rambach M, Kirchmair G, Hennrich M, Zoller P, Blatt R, Roos C F 2011 Science 334 57
Google Scholar
[53] Härter A, Denschlag J H 2014 Contemp. Phys. 55 33
Google Scholar
[54] Puri P, Mills M, Schneider C, Simbotin I, Montgomery J A Jr, Cote R, Suits A G, Hudson E R 2017 Science 357 1370
[55] Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001
Google Scholar
[56] Grier A T, Cetina M, Oruevi F, Vuleti V 2009 Phys. Rev. Lett. 102 223201
Google Scholar
[57] Zipkes C, Palzer S, Sias C, Khl M 2010 Nature 464 388
Google Scholar
[58] Schmid S, Hrter A, Denschlag J H 2010 Phys. Rev. Lett. 105 133202
Google Scholar
[59] Puri P, Mills M, Simbotin I, Montgomery J A, Ct R, Schneider C, Suits A G, Hudson E R 2019 Nat. Chem. 11 615
Google Scholar
[60] Prestage J D, Dick G J, Maleki L 1989 J. Appl. Phys. 66 1013
Google Scholar
[61] Gulde S 2003 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[62] Mizrahi J 2013 Ph. D. Dissertation (Maryland: University of Maryland)
[63] Maunz P L W 2016 High Optical Access Trap 2.0
[64] Niffenegger R J, Stuart J, Sorace-Agaskar C, Kharas D, Bramhavar S, Bruzewicz C D, Loh W, McConnell R, Reens D, West G N, Sage J M, Chiaverini J 2020 Nature 586 538
[65] Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Neyenhuis B 2021 Nature 592 209
Google Scholar
[66] Labaziewicz J, Ge Y, Antohi P, Leibrandt D, Brown K R, Chuang I L 2008 Phys. Rev. Lett. 100 013001
Google Scholar
[67] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2018 Quantum Sci. Technol. 4 014004
Google Scholar
[68] Xie Y, Cui J, D’Onofrio M, Rasmusson A J, Howell S W, Richerme P 2021 Quantum Science and Technology 6 044009
Google Scholar
[69] Sterling R C 2014 Nat. Commun. 5 3637
[70] Wang Y, Qiao M, Cai Z, Zhang K, Jin N, Wang P, Chen W, Luan C, Du B, Wang H, Song Y, Yum D, Kim K 2020 Adv. Quantum Technol. 3 2000068
Google Scholar
[71] D’Onofrio M, Xie Y, Rasmusson A J, Wolanski E, Cui J, Richerme P 2021 Phys. Rev. Lett. 127 020503
Google Scholar
[72] Kaufmann H, Ulm S, Jacob G, Poschinger U, Landa H, Retzker A, Plenio M B, Schmidt-Kaler F 2012 Phys. Rev. Lett. 109 263003
Google Scholar
[73] Britton J, Sawyer B, Keith A, Wang C C, Freericks J, Uys H, Biercuk M, Bollinger J 2012 Nature 484 489
Google Scholar
[74] Grttner M, Bohnet J, Safavi-Naini A, Wall M, Bollinger J, Rey A 2017 Nat. Phys. 13 781
Google Scholar
[75] Jordan E, Gilmore K A, Shankar A, Safavi-Naini A, Bohnet J G, Holland M J, Bollinger J J 2019 Phys. Rev. Lett. 122 053603
Google Scholar
[76] Goodwin J F, Stutter G, Thompson R C, Segal D M 2016 Phys. Rev. Lett. 116 143002
Google Scholar
[77] Kielpinski D, Monroe C R, Wineland D J 2002 Nature 417 709
Google Scholar
[78] Blakestad R B 2010 Ph. D. Dissertation (Colorado: University of Colorado)
[79] Barrett M, Chiaverini J, Schätz T, Britton J, Itano W, Jost J, Knill E, Langer C, Leibfried D, Ozeri R, Wineland D 2004 Nature 429 737
Google Scholar
[80] Blakestad R B, Ospelkaus C, VanDevender A P, Amini J M, Britton J, Leibfried D, Wineland D J 2009 Phys. Rev. Lett. 102 153002
Google Scholar
[81] Mehta K K 2017 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)
[82] Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533
Google Scholar
[83] Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033
Google Scholar
[84] Setzer W, Ivory M, Slobodyan O, Wall J, Parazzoli L, Stick D, Gehl M, Blain M, Kay R, McGuinness H 2021 Appl. Phys. Lett. 119 154002
Google Scholar
[85] Maunz P, Moehring D, Madsen M, Jr R, Younge K, Monroe C 2017 Nat. Phys. 3 538
Google Scholar
[86] Blinov B, Moehring D, Duan L, Monroe C 2004 Nature 428 153
Google Scholar
[87] Hucul D, Inlek I, Vittorini G, Crocker C, Debnath S, Clark S, Monroe C 2014 Nat. Phys. 11 37
Google Scholar
[88] Stute A, Casabone B, Schindler P, Monz T, Schmidt P, Brandstätter B, Northup T, Blatt R 2012 Nature 485 482
Google Scholar
[89] Schupp J, Krcmarsky V, Krutyanskiy V, Meraner M, Northup T E, Lanyon B P 2021 PRX Quantum 2 020331
Google Scholar
[90] Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314
Google Scholar
[91] Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6
Google Scholar
[92] Walker T, Miyanishi K, Ikuta R, Takahashi H, Vartabi Kashanian S, Tsujimoto Y, Hayasaka K, Yamamoto T, Imoto N, Keller M 2018 Phys. Rev. Lett. 120 203601
Google Scholar
[93] Krutyanskiy V, Meraner M, Schupp J, Krcmarsky V, Hainzer H, Lanyon B 2019 npj Quantum Inf. 5 72
Google Scholar
[94] Ong F R, Schppert K, Jobez P, Teller M, Ames B, Fioretto D A, Friebe K, Lee M, Colombe Y, Blatt R, Northup T E 2020 New J. Phys. 22 063018
Google Scholar
[95] Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285
Google Scholar
[96] James D F V 199 Technical report, Report number = Quantum Dynamics of Cold Trapped Ions with Application to Quantum Computation
[97] Deng K, Sun Y L, Yuan W H, Xu Z T, Zhang J, Lu Z H, Luo J 2014 Rev. Sci. Instrum. 85 104706
Google Scholar
[98] Siverns J D, Simkins L R, Weidt S, and Hensinger W K 2012 Appl. Phys. B 107 921
Google Scholar
[99] Michael C 2009 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[100] Brownnutt M, Kumph M, Rabl P, Blatt R 2015 Rev. Mod. Phys. 87 1419
Google Scholar
[101] Boldin I A, Kraft A, Wunderlich C 2018 Phys. Rev. Lett. 120 023201
Google Scholar
[102] Sedlacek J A, Greene A, Stuart J, McConnell R, Bruzewicz C D, Sage J M, Chiaverini J 2018 Phys. Rev. A 97 020302
Google Scholar
[103] Hite D A, Colombe Y, Wilson A C, Brown K R, Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 103001
Google Scholar
[104] Deslauriers L, Olmschenk S, Stick D, Hensinger W K, Sterk J, Monroe C 2006 Phys. Rev. Lett. 97 103007
Google Scholar
[105] Klemens S 2020 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[106] Michael G 2017 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[107] Johnson K G, Wong-Campos J D, Restelli A, Landsman K A, Neyenhuis B, Mizrahi J, Monroe C 2016 Rev. Sci. Instrum. 87 053110
Google Scholar
[108] Daniilidis N, Narayanan S, Mller S A, Clark R, Lee T E, Leek P J, Wallraff A, Schulz S, SchmidtKaler F, Hffner H 2011 New J. Phys. 13 013032
Google Scholar
[109] He R, Cui J M, Li R R, Qian Z H, Chen Y, Ai M Z, Huang Y F, Li C F, Guo G C 2021 Rev. Sci. Instrum. 92 073201
Google Scholar
[110] Akerman N, Glickman Y, Kotler S, Keselman A, Ozeri R 2011 Nature 473 61
Google Scholar
[111] Hanns-Christoph N 1998 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[112] Berkeland D J 2002 Rev. Sci. Instrum. 73 2856
Google Scholar
[113] Herskind P F, Dantan A, Albert M, Marler J P, Drewsen M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154008
Google Scholar
[114] Cornelius H 2014 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[115] [116] David H 2015 Ph. D. Dissertation (Maryland: University of Maryland)
[117] Shantanu D 2016 Ph. D. Dissertation(Maryland: University of Maryland)
[118] Gerber S, Rotter D, Hennrich M, Blatt R, Rohde F, Schuck C, Almendros M, Gehr R, Dubin F, Eschner J 2009 New J. Phys. 11 013032
Google Scholar
[119] Shu G, Dietrich M R, Kurz N, Blinov B B 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154005
Google Scholar
[120] Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G, Wineland D J 2009 Nat. Phys. 5 551
Google Scholar
[121] Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M, Leuchs G 2012 Phys. Rev. A 86 043431
Google Scholar
[122] Streed E W, Norton B G, Jechow A, Weinhold T J, and Kielpinski D 2011 Phys. Rev. Lett. 106 010502
Google Scholar
[123] Ghadimi M, Blms V, Norton B G, Fisher P M, Connell S C, Amini J M, Volin C, Hayden H, Pai C S, Kielpinski D, Lobino M, Streed E W 2017 npj Quantum Inf. 3 1
Google Scholar
[124] Monroe C, Swann W, Robinson H, Wieman C 1990 Phys. Rev. Lett. 65 1571
Google Scholar
[125] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
[126] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024
Google Scholar
[127] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201
Google Scholar
[128] Muldoon C, Brandt L, Dong J, Stuart D, Brainis E, Himsworth M, Kuhn A 2012 New J. Phys. 14 073051
Google Scholar
[129] Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014
Google Scholar
[130] Stuart D, Kuhn A 2018 New J. Phys. 20 023013
Google Scholar
[131] Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024
Google Scholar
[132] Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R, Rey A M, Regal C A 2014 Science 345 306
Google Scholar
[133] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletié V, Lukin M D 2017 Nature 551 579
Google Scholar
[134] Pagano G, Scazza F, Foss-Feig M 2019 Adv. Quantum Technol. 2 1800067
Google Scholar
[135] Enderlein M, Huber T, Schneider C, Schaetz T 2012 Phys. Rev. Lett. 109 233004
Google Scholar
[136] Lambrecht A, Schmidt J, Weckesser P, Debatin M, Karpa L, Schaetz T 2017 Nat. Photonics 11 704
Google Scholar
[137] Cormick C, Schaetz T, Morigi G 2011 New J. Phys. 13 043019
Google Scholar
[138] Huber T, Lambrecht A, Schmidt J, Karpa L, Schaetz T 2014 Nat. Commun. 5 5587
Google Scholar
[139] Shen Y C, Lin G D 2020 New J. Phys. 22 053032
Google Scholar
[140] Olsacher T, Postler L, Schindler P, Monz T, Zoller P, Sieberer L M 2020 PRX Quantum 1 020316
Google Scholar
[141] Espinoza J D A, Mazzanti M, Fouka K, Schssler R X, Wu Z, Corboz P, Gerritsma R, Naini A S 2021 Phys. Rev. A 104 013302.
[142] Teoh Y H, Sajjan M, Sun Z, Rajabi F, Islam R 2021 Phys. Rev. A 104 022420.
[143] Takahashi H, Kassa E, Christoforou C, Keller M 2017 Phys. Rev. A 96 023824
Google Scholar
[144] Dantan A, Herskind P, Marler J, Albert M, Drewsen M 2009 Nat. Phys. 5 494
Google Scholar
[145] Cetina M, Bylinskii A, Karpa L, Gangloff D, Beck K M, Ge Y, Scholz M, Grier A T, Chuang I, Vuleti V 2013 New J. Phys. 15 053001
Google Scholar
[146] Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 Appl. Phys. B 76 125
Google Scholar
[147] Keller M, Lange B, Hayasaka K, Lange W, Walther H 2004 Nature 431 1075
Google Scholar
[148] Leibrandt D R, Labaziewicz J, Vuleti’V, Chuang I L 2009 Phys. Rev. Lett. 103 103001
Google Scholar
[149] Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001
Google Scholar
[150] Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602
Google Scholar
[151] Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603
Google Scholar
[152] Kassa E, Takahashi H, Christoforou C, Keller M 2017 Phys. Rev. A. 96 023824
[153] Guthöhrlein G, Keller M, Hayasaka K, Lange W, Walther H 2001 Nature 414 49
Google Scholar
[154] Russo C, Barros H, Stute A, Dubin F, Phillips E, Monz T, Northup T, Becher C, Salzburger T, Ritsch H, Schmidt P, Blatt R 2009 Appl. Phys. B 95 205
Google Scholar
[155] Sterk J D, Luo L, Manning T A, Maunz P, Monroe C 2012 Phys. Rev. A 85 062308
Google Scholar
[156] Nguyen C H, Utama A N, Lewty N, Kurtsiefer C 2018 Phys. Rev. A 98 063833
Google Scholar
[157] Steiner M, Meyer H M, Deutsch C, Reichel J, Khl M 2013 Phys. Rev. Lett. 110 043003
Google Scholar
[158] Steiner M, Meyer H M, Reichel J, Köhl M 2014 Phys. Rev. Lett. 113 263003
Google Scholar
[159] Ballance T G, Meyer H M, Kobel P, Ott K, Reichel J, Köhl M 2017 Phys. Rev. A 95 033812
Google Scholar
[160] Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K, Schmidt-Kaler F 2008 New J. Phys. 10 013004
Google Scholar
[161] Kaufmann H, Ruster T, Schmiegelow C T, Schmidt-Kaler F, Poschinger U G 2014 New J. Phys. 16 073012
Google Scholar
[162] Flhmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513
Google Scholar
[163] Negnevitsky V, Marinelli M, Mehta K K, Lo H Y, Flühmann C, Home J P 2018 Nature 563 527
Google Scholar
[164] Daniel K 2015 Ph. D. Dissertation (Zurich: ETH Zurich)
[165] Hensinger W K, Olmschenk S, Stick D, Hucul D, Yeo M, Acton M, Deslauriers L, Monroe C, Rabchuk J 2006 Appl. Phys. Lett. 88 034101
Google Scholar
[166] Decaroli C, Matt R, Oswald R, Axline C, Ernzer M, Flannery J, Ragg S, Home J P 2021 Quantum Science and Technology 6 044001
Google Scholar
[167] Ragg S, Decaroli C, Lutz T, Home J P 2019 Rev. Sci. Instrum. 90 103203
Google Scholar
[168] Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003
Google Scholar
[169] Cho D I, Hong S, Lee M, Kim T 2015 Micro and Nano Systems Letters 3 2
Google Scholar
[170] Britton J, Leibfried D, Beall J, Blakestad R B, Bollinger J J, Chiaverini J, Epstein R J, Jost J D, Kielpinski D, Langer C, Ozeri R, Reichle R, Seidelin S, Shiga N, Wesenberg J H, Wineland D J 2006 arXiv e-prints, quant.
[171] Wilpers G, See P, Gill P, Sinclair A 2012 Nat. Nanotechnol. 7 572
Google Scholar
[172] Brown K R, Kim J, Monroe C 2016 npj Quantum Inf. 2 16034
Google Scholar
[173] Moehring D L, Highstrete C, Stick D, Fortier K M, Haltli R, Tigges C, Blain M G 2011 New J. Phys. 13 075018
Google Scholar
[174] Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P, Wineland D J 2010 New J. Phys. 12 033031
Google Scholar
[175] Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D, Brown K R 2014 Phys. Rev. A 89 062308
Google Scholar
[176] Bowler R, Gaebler J, Lin Y, Tan T R, Hanneke D, Jost J D, Home J P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 080502
Google Scholar
[177] Kaushal V, Lekitsch B, Stahl A, Hilder J, Pijn D, Schmiegelow C, Bermudez A, Mller M, SchmidtKaler F, Poschinger U 2020 AVS Quantum Sci. 2 014101
Google Scholar
[178] Barrett M D, DeMarco B, Schaetz T, Meyer V, Leibfried D, Britton J, Chiaverini J, Itano W M, Jelenkovi ′B, Jost J D, Langer C, Rosenband T, Wineland D J 2003 Phys. Rev. A 68 042302
Google Scholar
[179] Todaro S L, Verma V B, McCormick K C, Allcock D T C, Mirin R P, Wineland D J, Nam S W, Wilson A C, Leibfried D, Slichter D H 2021 Phys. Rev. Lett. 126 010501
Google Scholar
[180] Sorace-Agaskar C, Kharas D, Yegnanarayanan S, Maxson R, West G N, Loh W, Bramhavar S, Ram R J, Chiaverini J, Sage J 2019 IEEE J. Sel. Top. Quantum Electron. 25 1
[181] Khromova A, Piltz C, Scharfenberger B, Gloger T F, Johanning M, Varón A F, Wunderlich C 2012 Phys. Rev. Lett. 108 220502
Google Scholar
[182] Weidt S, Randall J, Webster S C, Lake K, Webb A E, Cohen I, Navickas T, Lekitsch B, Retzker A, Hensinger W K 2016 Phys. Rev. Lett. 117 220501
Google Scholar
[183] Harty T P, Sepiol M A, Allcock D T C, Ballance C J, Tarlton J E, Lucas D M 2016 Phys. Rev. Lett. 117 140501
Google Scholar
[184] Zarantonello G, Hahn H, Morgner J, Schulte M, Bautista-Salvador A, Werner R F, Hammerer K, Ospelkaus C 2019 Phys. Rev. Lett. 123 260503
Google Scholar
-
图 3 Innsbruck式的刀片阱[61] (a)组装后的离子阱实物图; (b)离子阱尺寸和结构图
Figure 3. Innsbruck style blade ion trap: (a) Photograph of an assembled blade trap; (b) dimensions and structure of the trap
图 4 Maryland型刀片阱[62] (a)分段刀片阱结构图. 分段刀片结构不仅可以提供轴向束缚, 还能够实现非简谐电势, 实现更均匀的离子间距. (b) 在另一个刀片阱中, 将DC最外侧电极的长度从250 μm增加至10 mm, 减小RF在轴向的电场分量[116,117]
Figure 4. Maryland style blade ion trap[62]: (a) Structure of segmented blade ion trap. The segmented blade not only can provide axial confinement, but also generate non-quadratic axial potential to achieve uniform ion distance; (b) in another blade ion trap, the out-most segment is increased to 10 mm from 250 μm in order to reduce the residual RF electric field along the axial direction[116,117]
图 5 中国科学技术大学的刀片阱[109] (a)放置于玻璃真空腔中的刀片阱, 在其四周允许同时使用两个NA最大为0.32的物镜和两个NA为0.66的物镜; (b)刀片阱的结构. 该刀片材料为熔融石英, 表面具有8 μm金层, DC电极表面使用激光加工成为五段
Figure 5. The blade ion trap used in University of Science and Technology of China [109]: (a) A blade ion trap is placed in a glass vacuum cell. Two objectives with a maximum NA of 0.32 and another two objectives with a maximum NA of 0.66 are allowed to be used simultaneously. (b) The structure of the blade ion trap. The blades are made from fused silica and coated with a 8 μm gold layer. The surface gold of the DC electrodes is segmented into five using laser cutting
图 6 光学腔阱 (a) Innsbruck大学的光学腔阱[93]. 离子发出的854 nm光子有50%的概率被光学腔收集, 并被波导转换为通信波长1550 nm的光子. (b) Sussex大学的光学腔阱. 该装置首次实现了离子与腔模的强耦合[143]. (c) Aarhus大学的离子阱. 一束径向泵浦光(RP)用于Doppler冷却循环, 发光的离子可以在CCD上成像, 光学腔镜(CM)沿轴向放置, 压电平移台(PZT)将腔镜(CM)锁定到与轴向RP光共振. (d)当使用径向RP光时, 整个离子阱中的大约
$6, 400 \pm 200$ 个离子全部发亮. (e)关闭径向的RP光, 只有光学腔中通过RP光时, 处于腔内的$536\pm18$ 个离子可以正常发光, 而在腔外的离子进入暗态[144]Figure 6. Ion traps with integrated optical cavities: (a) Integrated optical cavity trap in University of Innsbruck [93]. 50% of the 854-nm photons emitted from the ion can be collected by the cavity, and are converted to a communication wavelength of 1550 nm. (b) Integrated optical cavity trap in Sussex University. This trap demonstrated the first strong coupling between the ions and the cavity mode. (c) Ion trap in Aarhus University. The cavity mirror (CM) is along the axial direction, A pumping beam in the radial direction is used to pump the ions back into the Doppler cooling cycle. These ions can be imaged on the CCD. A Piezo-electric Transducer (PZT) is used to actively lock the optical cavity in resonance with the RP laser. (d) When the radial RP laser is on, the entire crystal of approximately
$6, 400\pm200$ ions are all bright. (d) When the radial RP is off, only the$536\pm18$ ions in the cavity are bright. The ions outside the cavity are in dark state [144].图 9 IonQ公司的离子阱芯片HOA [63,172] (a) HOA离子阱芯片的照片; (b)该表面阱的Y型结电极, 电极的形状已经被优化, 使得沿着轴线的射频电场分量最小, 红线表示离子在不同区域间穿梭的路径; (c)离子阱的内部结构, 该离子阱具有四个金属层, 顶部电极层(M4), 较低的金属布线层(M1, M2和M3); (d)多离子操控的光路图
Figure 9. High-Optical-Access trap from IonQ Inc[63]: (a) Photo of HOA ion trap. It can be clearly seen that the linear trap is located on a higher platform, and has a long and narrow through hole along the axis, and two Y-junction electrode structures. The trap has 94 control DC electrodes. (b) Y-junction of this surface trapl. The shape of the electrodes has been optimized to minimize the RF electric field component along the axis. The red line shows the path the ions transporting between different regions. (c) Inner structure of the ion trap. This ion trap has four metal layers, the top electrode layer (M4), and the lower metal layers (M1, M2 and M3). (d) Optical diagram of the 11-qubit system[44]
图 10 Honeywell公司的Model H1离子阱[65] (a)云操作运行结构; (b)离子阱的结构, 该离子阱由16个不同区域组成, 分别为五个门操作区(蓝色)、两个专门用于存储离子的扩展门操作区(橙色)、八个辅助区(黄色)和一个装载区(紫色); (c)基于移动离子实现两个非近邻离子两比特门操作的量子电路, 以及其在该离子阱系统中对应的操作流程
Figure 10. Honeywell's Model H1 ion trap [65]: (a) Structure of cloud operation ionn trap system. (b) The structure of the trap. The trap consists of 16 distinct zones, consisting of five gate zones (blue), two extended gate zones dedicated to ion storage (orange), eight auxiliary zones (yellow), and one loading zone (violet). (c) A quantum circuit for realizing a two-qubit gate operation between two ions that are not adjacent, and its corresponding operation flow in the ion trap system
图 11 麻省理工大学(MIT)集成波导离子阱结构示意图[64] (a)集成在
$ \mathrm{SiO_{2}} $ 内的光波导和输出光栅耦合器将激光聚焦到离子上; (b)激光从光纤通过边缘耦合进入芯片中的波导; (c)光纤经过光纤真空馈通进入低温真空环境, 芯片放置于7 K冷头上; (d)$ \mathrm{^{88}Sr} $ 原子和$ \mathrm{^{88}Sr^{+}} $ 离子的能级图; (e)离子阱中心区域的扫描电子显微镜(SEM)图像, 显示了电极上的方形通光窗口以及周围的RF电极和DC电极分布, 插图: 扫描电镜显示的光栅耦合器, 可以实现光束横向聚焦; (f)集成波导离子阱芯片封装, 插图为1$ \mathrm{cm^{2}} $ 左右的离子阱芯片Figure 11. Ion trap integrated with waveguides used by Massachusetts institute of technology (MIT) [64]: (a) Lasers are propagating in the Optical waveguide and focused to the ion by the grating coupler in
$ \mathrm{SiO_{2}} $ substrate. (b) Lasers are coupled from the optical fiber to the on-chip waveguide using the edge coupling method. (c) Optical fibers are fed through the cryostat system using the fiber feedthrough.The ion trap chip is located on the cold head at 7 K. (d)$ \mathrm{^{88}Sr} $ and$ \mathrm{^{88}Sr^{+}} $ ion energy level diagram. (e) The scanning electron microscope (SEM) image of the central region of the ion trap shows the square light-passing window on the electrode and the distribution of RF electrode and DC electrode around it. Inset: A scanning electron microscope shows a grating coupler that enables transverse focusing of a beam. (f) Photonic ion-trap chip packaged. Inset is an ion trap chip around 1$ \mathrm{cm^{2}} $ .图 12 NIST的集成载流导线离子阱芯片[41]. 图中RF电极(紫色)和DC电极(灰色)用于囚禁离子两个
$ \mathrm{^{25}Mg^{+}} $ 离子, 距表面30 μm. 频率达MHz的射频电流被加载到绿色(编号1到3)的载流电极上, 在离子附近产生垂直于轴的射频磁场和射频磁场梯度. 利用该梯度产生的力, 可以使用微波实现两离子纠缠门. 左上方的小图中, 两个离子偏移轴线而受到不同的射频磁场, 由于AC zeeman移频效应而具有不同的能级, 可以实现离子的独立寻址Figure 12. NIST’s integrated current-carrying wire(CCW) ion trap chip[41]. RF electrodes (purple) and DC electrodes (gray) are used to trap two
$ \mathrm{^{25}Mg^{+}} $ ions, 30 μm from the surface. RF currents at frequencies up to MHz are loaded onto green (numbered 1 to 3) current-carrying electrodes, generating RF magnetic fields and RF magnetic gradients perpendicular to the axis near the ions. Using the forces generated by this gradient, a two-ion entanglement gate can be realized using microwaves. In the small figure on the upper left, two ions with different RF magnetic fields due to their offset axes have different energy levels due to the AC Zeeman frequency shift effect and can achieve independent ion addressing.表 1 部分光学腔实验的参数, 来自文献[105]
Table 1. Structural parameters of capillary of different kind of fluid
参考文献 课题组 腔长/μm 凹面半径/μm 模式波长 /nm 束腰/μm 精细度 [153] Walther 6000 10000 Ca-397 24 3000 [149] Blatt 21000 25000 Ca-729 54 35000 [146, 147] Walther 8000 10000 Ca-866 37 49000 [16, 154] Blatt 19980 10000 Ca-866 13 70000 [148] Chuang 50000 50000 Sr-422 57.9 25600 [145] Vuletic 22000 25000 Yb-369 38 12500 [155] Monroe 2126 25000 Yb-369 25 3790$\rightarrow $1490 [93] Blatt 19900 9980 Ca-866 12.3 54000 [156] Kurtsiefer 11000 5500 Rb-780 2.4 603 [157] Köhl 230 390 Yb-935 7 1000 [158] Köhl 150 300 Yb-935 6.1 20000 [159] Köhl 150 200 Yb-935 3.1 1140$\rightarrow $207 [143] Keller 367 560 Ca-866 8.5 48000 -
[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467
Google Scholar
[2] Shor P W 1994 Proceedings of the 35th Annual IEEE Symposium on Foundation of Computer Science 124 134
[3] Nielsen M A, Chuang I 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p19
[4] Paul W and Steinwedel H 1953 Z Naturforsch A. 8 448
Google Scholar
[5] Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53
[6] [7] Schwartz J C, Senko M W, Syka J 2002 J. Am. Soc. Mass. Spectrom. 13 659
Google Scholar
[8] Bollinger J J, Heinzen D J, Itano W M, Gilbert S L, Wineland D J 1990 Conference on Precision Electromagnetic Measurements Ottawa, ON, Canada, June 11–14 1990 p264
[9] Fisk P T H, Sellars M J, Lawn M A, Coles G 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 344
Google Scholar
[10] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808
Google Scholar
[11] Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001
Google Scholar
[12] Keller J, Burgermeister T, Kalincev D, Kiethe J, Mehlstubler T E 2016 J. Phys. Conf. Ser. 723 p012027
[13] Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630
Google Scholar
[14] Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 J. Phys. B: At. Mol. Opt. Phys. 36 613
Google Scholar
[15] Kreuter A, Becher C, Lancaster G P T, Mundt A B, Russo C, Häffner H, Roos C, Eschner J, Schmidt-Kaler F, and Blatt R 2004 Phys. Rev. Lett. 92 203002
Google Scholar
[16] Barros H G, Stute A, Northup T E, Russo C, Schmidt P O, Blatt R 2009 New J. Phys. 11 103004
Google Scholar
[17] Takahashi H, Wilson A, Riley-Watson A, Oruevi F, Seymour-Smith N, Keller M, Lange W 2013 New J. Phys. 15 053011
Google Scholar
[18] Odom B, Hanneke D, D’Urso B, Gabrielse G 2006 Phys. Rev. Lett. 97 030801
Google Scholar
[19] Porras D, Cirac J I 2004 Phys. Rev. Lett. 92 207901
Google Scholar
[20] Porras D, Cirac J I 2006 Phys. Rev. Lett. 96 250501
Google Scholar
[21] Islam R, Senko C, Campbell W C, Korenblit S, Smith J, Lee A, Edwards E E, Wang C C, Freericks J K, Monroe C 2013 Science 340 583
Google Scholar
[22] Mller M, Schindler P, Nigg D, Monz T, Barreiro J, Martinez E, Hennrich M, Diehl S, Zoller P, Blatt R 2013 Nat. Phys. 9 361
Google Scholar
[23] Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601
Google Scholar
[24] Neyenhuis B, Zhang J, Hess P W, Smith J, Lee A C, Richerme P, Gong Z X, Gorshkov A V, Monroe C 2017 Sci. Adv. 3 e1700672
[25] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091
Google Scholar
[26] Milburn G J, Schneider S, James D F V 2000 Fortschr. Phys. 48 801
Google Scholar
[27] Sørensen A, Mølmer K 2000 Phys. Rev. A 62 022311
Google Scholar
[28] Duan L M 2004 Phys. Rev. Lett. 93 100502
Google Scholar
[29] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 J. Res. Nat. Inst. Stand. Technol. 103 259
Google Scholar
[30] Debnath S, Linke N M, Figgatt C, Landsman K A, Wright K, Monroe C 2016 Nature 536 63
Google Scholar
[31] Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M, Kim J 2014 Phys. Rev. A 89 022317
Google Scholar
[32] NIST Penning Traps 2022 https://www.nist.gov/pml/time-and-frequency-division/ion-storage/penning-traps[2022-1-25]
[33] Dilling J, Blaum K, Brodeur M, Eliseev S 2018 Annu. Rev. Nucl. Part. Sci. 68 45
[34] Wineland D J, Drullinger R E, Walls F L 1978 Phys. Rev. Lett. 40 1639
Google Scholar
[35] Diedrich F, Bergquist J C, Itano W M, Wineland D J 1989 Phys. Rev. Lett. 62 403
Google Scholar
[36] Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281
Google Scholar
[37] Harty T P, Allcock D, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N, Lucas D M 2014 Phys. Rev. Lett 113 220501
Google Scholar
[38] Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504
Google Scholar
[39] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D, Wineland D J 2016 Phys. Rev. Lett. 117 060505
Google Scholar
[40] Clark C R, Tinkey H N, Sawyer B C, Meier A M, Burkhardt K A, Seck C M, Shappert C M, Guise N D, Volin C E, Fallek S D, Hayden H T, Rellergert W G, Brown K R 2021 Phys. Rev. Lett. 127 130505
Google Scholar
[41] Srinivas R, Burd S, Knaack H, Sutherland R, Kwiatkowski A, Glancy S, Knill E, Wineland D, Leibfried D, Wilson A, Allcock D, Slichter D 2021 Nature 597 209
Google Scholar
[42] Wang P, Luan C-Y, Qiao M, Um M, Junhua Z, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 1
[43] Pogorelov I, Feldker T, Marciniak C D, Postler L, Jacob G, Krieglsteiner O, Podlesnic V, Meth M, Negnevitsky V, Stadler M, Höfer B, Wächter C, Lakhmanskiy K, Blatt R, Schindler P, Monz T 2021 PRX Quantum 2 020343
Google Scholar
[44] Wright K, Beck K, Debnath S, Amini J, Nam Y, Grzesiak N, Chen J-S, Pisenti N, Chmielewski M, Collins C, Hudek K, Mizrahi J, Wong-Campos J, Allen S, Apisdorf J, Solomon P, Williams M, Ducore A, Blinov A, Kim J 2019 Nat. Commun. 10 5464
Google Scholar
[45] Knill E, Laflamme R 1997 Phys. Rev. A 55 900
Google Scholar
[46] Aharonov D, Ben-Or M 2008 SIAM J. Comput. 38 1207
Google Scholar
[47] Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316
Google Scholar
[48] Egan L, Debroy D, Noel C, Risinger A, Zhu D, Biswas D, Newman M, Li M, Brown K, Cetina M, Monroe C 2021 Nature 598 281
Google Scholar
[49] Ryan-Anderson C, Bohnet J G, Lee K, Gresh D, Hankin A, Gaebler J P, Francois D, Chernoguzov A, Lucchetti D, Brown N C, Gatterman T M, Halit S K, Gilmore K, Gerber J A, Neyenhuis B, Hayes D, Stutz R P 2021 Phys. Rev. X 11 041058
Google Scholar
[50] Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153
Google Scholar
[51] Blatt R, Roos C F 2012 Nat. Phys. 8 277
Google Scholar
[52] Lanyon B P, Hempel C, Nigg D, Muller M, Gerritsma R, Zahringer F, Schindler P, Barreiro J T, Rambach M, Kirchmair G, Hennrich M, Zoller P, Blatt R, Roos C F 2011 Science 334 57
Google Scholar
[53] Härter A, Denschlag J H 2014 Contemp. Phys. 55 33
Google Scholar
[54] Puri P, Mills M, Schneider C, Simbotin I, Montgomery J A Jr, Cote R, Suits A G, Hudson E R 2017 Science 357 1370
[55] Tomza M, Jachymski K, Gerritsma R, Negretti A, Calarco T, Idziaszek Z, Julienne P S 2019 Rev. Mod. Phys. 91 035001
Google Scholar
[56] Grier A T, Cetina M, Oruevi F, Vuleti V 2009 Phys. Rev. Lett. 102 223201
Google Scholar
[57] Zipkes C, Palzer S, Sias C, Khl M 2010 Nature 464 388
Google Scholar
[58] Schmid S, Hrter A, Denschlag J H 2010 Phys. Rev. Lett. 105 133202
Google Scholar
[59] Puri P, Mills M, Simbotin I, Montgomery J A, Ct R, Schneider C, Suits A G, Hudson E R 2019 Nat. Chem. 11 615
Google Scholar
[60] Prestage J D, Dick G J, Maleki L 1989 J. Appl. Phys. 66 1013
Google Scholar
[61] Gulde S 2003 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[62] Mizrahi J 2013 Ph. D. Dissertation (Maryland: University of Maryland)
[63] Maunz P L W 2016 High Optical Access Trap 2.0
[64] Niffenegger R J, Stuart J, Sorace-Agaskar C, Kharas D, Bramhavar S, Bruzewicz C D, Loh W, McConnell R, Reens D, West G N, Sage J M, Chiaverini J 2020 Nature 586 538
[65] Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Neyenhuis B 2021 Nature 592 209
Google Scholar
[66] Labaziewicz J, Ge Y, Antohi P, Leibrandt D, Brown K R, Chuang I L 2008 Phys. Rev. Lett. 100 013001
Google Scholar
[67] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y, Monroe C 2018 Quantum Sci. Technol. 4 014004
Google Scholar
[68] Xie Y, Cui J, D’Onofrio M, Rasmusson A J, Howell S W, Richerme P 2021 Quantum Science and Technology 6 044009
Google Scholar
[69] Sterling R C 2014 Nat. Commun. 5 3637
[70] Wang Y, Qiao M, Cai Z, Zhang K, Jin N, Wang P, Chen W, Luan C, Du B, Wang H, Song Y, Yum D, Kim K 2020 Adv. Quantum Technol. 3 2000068
Google Scholar
[71] D’Onofrio M, Xie Y, Rasmusson A J, Wolanski E, Cui J, Richerme P 2021 Phys. Rev. Lett. 127 020503
Google Scholar
[72] Kaufmann H, Ulm S, Jacob G, Poschinger U, Landa H, Retzker A, Plenio M B, Schmidt-Kaler F 2012 Phys. Rev. Lett. 109 263003
Google Scholar
[73] Britton J, Sawyer B, Keith A, Wang C C, Freericks J, Uys H, Biercuk M, Bollinger J 2012 Nature 484 489
Google Scholar
[74] Grttner M, Bohnet J, Safavi-Naini A, Wall M, Bollinger J, Rey A 2017 Nat. Phys. 13 781
Google Scholar
[75] Jordan E, Gilmore K A, Shankar A, Safavi-Naini A, Bohnet J G, Holland M J, Bollinger J J 2019 Phys. Rev. Lett. 122 053603
Google Scholar
[76] Goodwin J F, Stutter G, Thompson R C, Segal D M 2016 Phys. Rev. Lett. 116 143002
Google Scholar
[77] Kielpinski D, Monroe C R, Wineland D J 2002 Nature 417 709
Google Scholar
[78] Blakestad R B 2010 Ph. D. Dissertation (Colorado: University of Colorado)
[79] Barrett M, Chiaverini J, Schätz T, Britton J, Itano W, Jost J, Knill E, Langer C, Leibfried D, Ozeri R, Wineland D 2004 Nature 429 737
Google Scholar
[80] Blakestad R B, Ospelkaus C, VanDevender A P, Amini J M, Britton J, Leibfried D, Wineland D J 2009 Phys. Rev. Lett. 102 153002
Google Scholar
[81] Mehta K K 2017 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology)
[82] Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533
Google Scholar
[83] Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033
Google Scholar
[84] Setzer W, Ivory M, Slobodyan O, Wall J, Parazzoli L, Stick D, Gehl M, Blain M, Kay R, McGuinness H 2021 Appl. Phys. Lett. 119 154002
Google Scholar
[85] Maunz P, Moehring D, Madsen M, Jr R, Younge K, Monroe C 2017 Nat. Phys. 3 538
Google Scholar
[86] Blinov B, Moehring D, Duan L, Monroe C 2004 Nature 428 153
Google Scholar
[87] Hucul D, Inlek I, Vittorini G, Crocker C, Debnath S, Clark S, Monroe C 2014 Nat. Phys. 11 37
Google Scholar
[88] Stute A, Casabone B, Schindler P, Monz T, Schmidt P, Brandstätter B, Northup T, Blatt R 2012 Nature 485 482
Google Scholar
[89] Schupp J, Krcmarsky V, Krutyanskiy V, Meraner M, Northup T E, Lanyon B P 2021 PRX Quantum 2 020331
Google Scholar
[90] Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314
Google Scholar
[91] Kobel P, Breyer M, Köhl M 2021 npj Quantum Inf. 7 6
Google Scholar
[92] Walker T, Miyanishi K, Ikuta R, Takahashi H, Vartabi Kashanian S, Tsujimoto Y, Hayasaka K, Yamamoto T, Imoto N, Keller M 2018 Phys. Rev. Lett. 120 203601
Google Scholar
[93] Krutyanskiy V, Meraner M, Schupp J, Krcmarsky V, Hainzer H, Lanyon B 2019 npj Quantum Inf. 5 72
Google Scholar
[94] Ong F R, Schppert K, Jobez P, Teller M, Ames B, Fioretto D A, Friebe K, Lee M, Colombe Y, Blatt R, Northup T E 2020 New J. Phys. 22 063018
Google Scholar
[95] Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285
Google Scholar
[96] James D F V 199 Technical report, Report number = Quantum Dynamics of Cold Trapped Ions with Application to Quantum Computation
[97] Deng K, Sun Y L, Yuan W H, Xu Z T, Zhang J, Lu Z H, Luo J 2014 Rev. Sci. Instrum. 85 104706
Google Scholar
[98] Siverns J D, Simkins L R, Weidt S, and Hensinger W K 2012 Appl. Phys. B 107 921
Google Scholar
[99] Michael C 2009 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[100] Brownnutt M, Kumph M, Rabl P, Blatt R 2015 Rev. Mod. Phys. 87 1419
Google Scholar
[101] Boldin I A, Kraft A, Wunderlich C 2018 Phys. Rev. Lett. 120 023201
Google Scholar
[102] Sedlacek J A, Greene A, Stuart J, McConnell R, Bruzewicz C D, Sage J M, Chiaverini J 2018 Phys. Rev. A 97 020302
Google Scholar
[103] Hite D A, Colombe Y, Wilson A C, Brown K R, Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 103001
Google Scholar
[104] Deslauriers L, Olmschenk S, Stick D, Hensinger W K, Sterk J, Monroe C 2006 Phys. Rev. Lett. 97 103007
Google Scholar
[105] Klemens S 2020 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[106] Michael G 2017 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[107] Johnson K G, Wong-Campos J D, Restelli A, Landsman K A, Neyenhuis B, Mizrahi J, Monroe C 2016 Rev. Sci. Instrum. 87 053110
Google Scholar
[108] Daniilidis N, Narayanan S, Mller S A, Clark R, Lee T E, Leek P J, Wallraff A, Schulz S, SchmidtKaler F, Hffner H 2011 New J. Phys. 13 013032
Google Scholar
[109] He R, Cui J M, Li R R, Qian Z H, Chen Y, Ai M Z, Huang Y F, Li C F, Guo G C 2021 Rev. Sci. Instrum. 92 073201
Google Scholar
[110] Akerman N, Glickman Y, Kotler S, Keselman A, Ozeri R 2011 Nature 473 61
Google Scholar
[111] Hanns-Christoph N 1998 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[112] Berkeland D J 2002 Rev. Sci. Instrum. 73 2856
Google Scholar
[113] Herskind P F, Dantan A, Albert M, Marler J P, Drewsen M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154008
Google Scholar
[114] Cornelius H 2014 Ph. D. Dissertation (Innsbruck: Universität Innsbruck)
[115] [116] David H 2015 Ph. D. Dissertation (Maryland: University of Maryland)
[117] Shantanu D 2016 Ph. D. Dissertation(Maryland: University of Maryland)
[118] Gerber S, Rotter D, Hennrich M, Blatt R, Rohde F, Schuck C, Almendros M, Gehr R, Dubin F, Eschner J 2009 New J. Phys. 11 013032
Google Scholar
[119] Shu G, Dietrich M R, Kurz N, Blinov B B 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154005
Google Scholar
[120] Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G, Wineland D J 2009 Nat. Phys. 5 551
Google Scholar
[121] Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M, Leuchs G 2012 Phys. Rev. A 86 043431
Google Scholar
[122] Streed E W, Norton B G, Jechow A, Weinhold T J, and Kielpinski D 2011 Phys. Rev. Lett. 106 010502
Google Scholar
[123] Ghadimi M, Blms V, Norton B G, Fisher P M, Connell S C, Amini J M, Volin C, Hayden H, Pai C S, Kielpinski D, Lobino M, Streed E W 2017 npj Quantum Inf. 3 1
Google Scholar
[124] Monroe C, Swann W, Robinson H, Wieman C 1990 Phys. Rev. Lett. 65 1571
Google Scholar
[125] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
[126] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 354 1024
Google Scholar
[127] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201
Google Scholar
[128] Muldoon C, Brandt L, Dong J, Stuart D, Brainis E, Himsworth M, Kuhn A 2012 New J. Phys. 14 073051
Google Scholar
[129] Kaufman A M, Lester B J, Regal C A 2012 Phys. Rev. X 2 041014
Google Scholar
[130] Stuart D, Kuhn A 2018 New J. Phys. 20 023013
Google Scholar
[131] Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024
Google Scholar
[132] Kaufman A M, Lester B J, Reynolds C M, Wall M L, Foss-Feig M, Hazzard K R, Rey A M, Regal C A 2014 Science 345 306
Google Scholar
[133] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletié V, Lukin M D 2017 Nature 551 579
Google Scholar
[134] Pagano G, Scazza F, Foss-Feig M 2019 Adv. Quantum Technol. 2 1800067
Google Scholar
[135] Enderlein M, Huber T, Schneider C, Schaetz T 2012 Phys. Rev. Lett. 109 233004
Google Scholar
[136] Lambrecht A, Schmidt J, Weckesser P, Debatin M, Karpa L, Schaetz T 2017 Nat. Photonics 11 704
Google Scholar
[137] Cormick C, Schaetz T, Morigi G 2011 New J. Phys. 13 043019
Google Scholar
[138] Huber T, Lambrecht A, Schmidt J, Karpa L, Schaetz T 2014 Nat. Commun. 5 5587
Google Scholar
[139] Shen Y C, Lin G D 2020 New J. Phys. 22 053032
Google Scholar
[140] Olsacher T, Postler L, Schindler P, Monz T, Zoller P, Sieberer L M 2020 PRX Quantum 1 020316
Google Scholar
[141] Espinoza J D A, Mazzanti M, Fouka K, Schssler R X, Wu Z, Corboz P, Gerritsma R, Naini A S 2021 Phys. Rev. A 104 013302.
[142] Teoh Y H, Sajjan M, Sun Z, Rajabi F, Islam R 2021 Phys. Rev. A 104 022420.
[143] Takahashi H, Kassa E, Christoforou C, Keller M 2017 Phys. Rev. A 96 023824
Google Scholar
[144] Dantan A, Herskind P, Marler J, Albert M, Drewsen M 2009 Nat. Phys. 5 494
Google Scholar
[145] Cetina M, Bylinskii A, Karpa L, Gangloff D, Beck K M, Ge Y, Scholz M, Grier A T, Chuang I, Vuleti V 2013 New J. Phys. 15 053001
Google Scholar
[146] Keller M, Lange B, Hayasaka K, Lange W, Walther H 2003 Appl. Phys. B 76 125
Google Scholar
[147] Keller M, Lange B, Hayasaka K, Lange W, Walther H 2004 Nature 431 1075
Google Scholar
[148] Leibrandt D R, Labaziewicz J, Vuleti’V, Chuang I L 2009 Phys. Rev. Lett. 103 103001
Google Scholar
[149] Mundt A B, Kreuter A, Becher C, Leibfried D, Eschner J, Schmidt-Kaler F, Blatt R 2002 Phys. Rev. Lett. 89 103001
Google Scholar
[150] Takahashi H, Kassa E, Christoforou C, Keller M 2020 Phys. Rev. Lett. 124 013602
Google Scholar
[151] Kato S, Aoki T 2015 Phys. Rev. Lett. 115 093603
Google Scholar
[152] Kassa E, Takahashi H, Christoforou C, Keller M 2017 Phys. Rev. A. 96 023824
[153] Guthöhrlein G, Keller M, Hayasaka K, Lange W, Walther H 2001 Nature 414 49
Google Scholar
[154] Russo C, Barros H, Stute A, Dubin F, Phillips E, Monz T, Northup T, Becher C, Salzburger T, Ritsch H, Schmidt P, Blatt R 2009 Appl. Phys. B 95 205
Google Scholar
[155] Sterk J D, Luo L, Manning T A, Maunz P, Monroe C 2012 Phys. Rev. A 85 062308
Google Scholar
[156] Nguyen C H, Utama A N, Lewty N, Kurtsiefer C 2018 Phys. Rev. A 98 063833
Google Scholar
[157] Steiner M, Meyer H M, Deutsch C, Reichel J, Khl M 2013 Phys. Rev. Lett. 110 043003
Google Scholar
[158] Steiner M, Meyer H M, Reichel J, Köhl M 2014 Phys. Rev. Lett. 113 263003
Google Scholar
[159] Ballance T G, Meyer H M, Kobel P, Ott K, Reichel J, Köhl M 2017 Phys. Rev. A 95 033812
Google Scholar
[160] Huber G, Deuschle T, Schnitzler W, Reichle R, Singer K, Schmidt-Kaler F 2008 New J. Phys. 10 013004
Google Scholar
[161] Kaufmann H, Ruster T, Schmiegelow C T, Schmidt-Kaler F, Poschinger U G 2014 New J. Phys. 16 073012
Google Scholar
[162] Flhmann C, Nguyen T L, Marinelli M, Negnevitsky V, Mehta K, Home J P 2019 Nature 566 513
Google Scholar
[163] Negnevitsky V, Marinelli M, Mehta K K, Lo H Y, Flühmann C, Home J P 2018 Nature 563 527
Google Scholar
[164] Daniel K 2015 Ph. D. Dissertation (Zurich: ETH Zurich)
[165] Hensinger W K, Olmschenk S, Stick D, Hucul D, Yeo M, Acton M, Deslauriers L, Monroe C, Rabchuk J 2006 Appl. Phys. Lett. 88 034101
Google Scholar
[166] Decaroli C, Matt R, Oswald R, Axline C, Ernzer M, Flannery J, Ragg S, Home J P 2021 Quantum Science and Technology 6 044001
Google Scholar
[167] Ragg S, Decaroli C, Lutz T, Home J P 2019 Rev. Sci. Instrum. 90 103203
Google Scholar
[168] Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003
Google Scholar
[169] Cho D I, Hong S, Lee M, Kim T 2015 Micro and Nano Systems Letters 3 2
Google Scholar
[170] Britton J, Leibfried D, Beall J, Blakestad R B, Bollinger J J, Chiaverini J, Epstein R J, Jost J D, Kielpinski D, Langer C, Ozeri R, Reichle R, Seidelin S, Shiga N, Wesenberg J H, Wineland D J 2006 arXiv e-prints, quant.
[171] Wilpers G, See P, Gill P, Sinclair A 2012 Nat. Nanotechnol. 7 572
Google Scholar
[172] Brown K R, Kim J, Monroe C 2016 npj Quantum Inf. 2 16034
Google Scholar
[173] Moehring D L, Highstrete C, Stick D, Fortier K M, Haltli R, Tigges C, Blain M G 2011 New J. Phys. 13 075018
Google Scholar
[174] Amini J M, Uys H, Wesenberg J H, Seidelin S, Britton J, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P, Wineland D J 2010 New J. Phys. 12 033031
Google Scholar
[175] Shu G, Vittorini G, Buikema A, Nichols C S, Volin C, Stick D, Brown K R 2014 Phys. Rev. A 89 062308
Google Scholar
[176] Bowler R, Gaebler J, Lin Y, Tan T R, Hanneke D, Jost J D, Home J P, Leibfried D, Wineland D J 2012 Phys. Rev. Lett. 109 080502
Google Scholar
[177] Kaushal V, Lekitsch B, Stahl A, Hilder J, Pijn D, Schmiegelow C, Bermudez A, Mller M, SchmidtKaler F, Poschinger U 2020 AVS Quantum Sci. 2 014101
Google Scholar
[178] Barrett M D, DeMarco B, Schaetz T, Meyer V, Leibfried D, Britton J, Chiaverini J, Itano W M, Jelenkovi ′B, Jost J D, Langer C, Rosenband T, Wineland D J 2003 Phys. Rev. A 68 042302
Google Scholar
[179] Todaro S L, Verma V B, McCormick K C, Allcock D T C, Mirin R P, Wineland D J, Nam S W, Wilson A C, Leibfried D, Slichter D H 2021 Phys. Rev. Lett. 126 010501
Google Scholar
[180] Sorace-Agaskar C, Kharas D, Yegnanarayanan S, Maxson R, West G N, Loh W, Bramhavar S, Ram R J, Chiaverini J, Sage J 2019 IEEE J. Sel. Top. Quantum Electron. 25 1
[181] Khromova A, Piltz C, Scharfenberger B, Gloger T F, Johanning M, Varón A F, Wunderlich C 2012 Phys. Rev. Lett. 108 220502
Google Scholar
[182] Weidt S, Randall J, Webster S C, Lake K, Webb A E, Cohen I, Navickas T, Lekitsch B, Retzker A, Hensinger W K 2016 Phys. Rev. Lett. 117 220501
Google Scholar
[183] Harty T P, Sepiol M A, Allcock D T C, Ballance C J, Tarlton J E, Lucas D M 2016 Phys. Rev. Lett. 117 140501
Google Scholar
[184] Zarantonello G, Hahn H, Morgner J, Schulte M, Bautista-Salvador A, Werner R F, Hammerer K, Ospelkaus C 2019 Phys. Rev. Lett. 123 260503
Google Scholar
Catalog
Metrics
- Abstract views: 11054
- PDF Downloads: 698
- Cited By: 0