Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ study of defect evolution and calculation of defect migration energy of FeCoCrNiAl0.3 high-entropy alloy under high-energy electron irradiation

DIAO Sizhe ZHANG Yifan ZHAO Fangqian Seung Jo Yoo Somei Ohnuki WAN Farong ZHANG Yong ZHAN Qian

Citation:

In-situ study of defect evolution and calculation of defect migration energy of FeCoCrNiAl0.3 high-entropy alloy under high-energy electron irradiation

DIAO Sizhe, ZHANG Yifan, ZHAO Fangqian, Seung Jo Yoo, Somei Ohnuki, WAN Farong, ZHANG Yong, ZHAN Qian
cstr: 32037.14.aps.74.20241481
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The sluggish diffusion and severe lattice distortion effects in high-entropy alloys (HEAs) theoretically impede the movement of radiation-induced point defects, thereby effectively suppressing the formation of larger defect clusters and ultimately enhancing the radiation resistance of materials. Current research on the radiation resistance of HEAs primarily concentrates on the qualitative analysis of the migration behaviors of radiation-induced defects, while the quantitative research on the energy barriers of the migration behavior of point defects is still limited. As a representative HEA system, FeCoCrNiAl-based alloy exhibits exceptional properties, including enhanced ductility, remarkable shear resistance, high tensile yield strength, and excellent oxidation resistance. In this study, FeCoCrNiAl0.3 alloy is selected as a model material and in-situ observations are conducted by using a 1.25-MV high-voltage electron microscope (HVEM) to systematically investigate the temporal evolution of irradiation-induced defects and precipitates at different temperatures. Based on the statistical data of saturated defect number density and defect growth rates under three irradiation temperatures, two intrinsic parameters of the alloy, i.e. interstitial atom migration energy and vacancy migration energy, are determined to be 1.09 eV and 1.47 eV, respectively. The higher interstitial atomic migration energy may be related to the incorporation of Al that has a smaller threshold energy and exhibits a larger atomic radius difference than the other elements in the alloy. In addition, the morphology and distribution of dislocation loops formed at 723 K and high-energy electron irradiation are characterized in detail, demonstrating the coexistence of perfect dislocation loops and Frank dislocation loops, both of which grow along different crystal planes. No systematic difference in growth process between the two types of loops is observed.
      Corresponding author: ZHAN Qian, qzhan@mater.ustb.edu.cn
    • Funds: Project supported by the National MCF Energy R&D Program (Grant No. 2019YFE03130002) and the National Natural Science Foundation of China (Grant No. 11775018).
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    张勇 2010非晶和高熵合金 (北京: 科学出版社)

    Zhang Y 2010 Amorphous and High Entropy Alloys (Beijing: Science Press

    [3]

    田震, 李聪聪, 吴渊, 吕昭平 2024 材料工程 52 1Google Scholar

    Tian Z, Li C C, Wu Y, Lü Z P 2024 J. Mater. Eng. 52 1Google Scholar

    [4]

    Cheng Z Y, Sun J R, Gao X, Wang Y Y, Cui J H, Wang T, Chang H L 2023 J. Alloy. Compd. 930 166768Google Scholar

    [5]

    Zhang Y W, Osetsky Y N, Weber W J 2021 Chem. Rev. 122 789Google Scholar

    [6]

    Li D Y, Li C X, Feng T, Zhang Y D, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285Google Scholar

    [7]

    Ma S G, Zhang S F, Qiao J W, Wang Z H, Gao M C, Jiao Z M, Yang H J, Zhang Y 2014 Intermetallics 54 104Google Scholar

    [8]

    Li Z, Zhao S, Diao H, Liaw P K, Meyers M A 2017 Sci. Rep. 7 42742Google Scholar

    [9]

    Gwalani B, Gorsse S, Choudhuri D, Zheng Y F, Mishra R S, Banerjee R 2019 Scr. Mater. 162 18Google Scholar

    [10]

    Chen W Y, Liu X, Chen Y R, Yeh J W, Tseng K K, Natesan K 2018 J. Nucl. Mater. 510 421Google Scholar

    [11]

    Chen W Y, Kirk M A, Hashimoti N, Yeh J W, Liu X, Chen Y R 2020 J. Nucl. Mater. 539 152324Google Scholar

    [12]

    Diao S Z, Liu Q, Zhang Y, Wan F R, Zhan Q 2024 Mater. Charact. 212 113964.Google Scholar

    [13]

    Yang T F, Guo W, Poplawsky J D, Li D Y, Wang L, Li Y, Hu W Y, Crespillo M L, Yan Z F, Zhang Y 2020 Acta Mater. 188 1Google Scholar

    [14]

    Kiritani M 1994 J. Nucl. Mater. 216 220Google Scholar

    [15]

    Bourret A 1971 Phys. Status Solidi A. 4 813Google Scholar

    [16]

    Urban K, Wilkens M 1971 Phys. Status Solidi A. 6 173Google Scholar

    [17]

    Liu P P, Jiang S N, Du Y F, Zhan Q, Zhao H F, Han W T, Yi X O, Ohnuki S, Wan F R 2021 Mater. Charact. 174 111014Google Scholar

    [18]

    Schäublin R, Henry J, Dai Y 2008 C. R. Phys. 9 389Google Scholar

    [19]

    Kiritani M, Yoshida N, Takata H, Maehara Y 1975 J. Phys. Soc. Jpn. 38 1677Google Scholar

    [20]

    Kiritani M, Takata H, Moriyama K, Fujita F E 1979 Philos. Mag. A 40 779Google Scholar

    [21]

    Kiritani M, Takata H 1978 J. Nucl. Mater. 69 277Google Scholar

    [22]

    Liu P P, Bai J W, Ke D, Wan F R, Wang Y B, Wang Y M, Ohnuki S, Zhan Q 2012 J. Nucl. Mater. 423 47Google Scholar

    [23]

    Kato T, Takahashi H, Izumiya M 1991 Mater. Trans. 32 921Google Scholar

    [24]

    Hayashi T, Fukumoto K, Matsui H 2002 J. Nucl. Mater. 307 951Google Scholar

    [25]

    Hashimoto N, Tanimoto J, Kubota T, Kinoshita H, Ohnuki S 2013 J. Nucl. Mater. 442 S796Google Scholar

    [26]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [27]

    Zhang B Z, Zhang Z, Xun K H, Asta M, Ding J, Ma E 2024 Proc. Nati. Acad. Sci. 121 e2314248121Google Scholar

    [28]

    Liu H C, Mitchell T 1982 J. Nucl. Mater. 107 318Google Scholar

    [29]

    He M R, Wang S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2016 Scr. Mater. 125 5Google Scholar

    [30]

    Wang X X, Niu L L, Wang S 2018 J. Nucl. Mater. 501 94Google Scholar

    [31]

    Brown L, Spring M, Ipohorski M 1971 Philos. Mag. 24 1495Google Scholar

    [32]

    Nakanishi D, Kawabata T, Doihara K, Okita T, Itakua M, Suziki K 2018 Philos. Mag. 98 3034Google Scholar

    [33]

    Lu C Y, Niu L L, Chen N J, Jin K, Yang T N, Xiu P Y, Zhang Y W, Gao F, Bei H B, Shi S 2016 Nat. Commun. 7 13564Google Scholar

    [34]

    He M R, Wang S, Shi S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2017 Acta Mater. 126 182Google Scholar

  • 图 1  FeCoCrNiAl0.3高熵合金在不同辐照温度条件下原位电子辐照过程中缺陷的产生与生长, 电子束方向均平行于{011}晶带轴, 并使用g = (200)的“双束”衍射衬度条件进行记录

    Figure 1.  Production and growth of defects in FeCoCrNiAl0.3 high entropy alloy during in-situ electron irradiation at different irradiation temperature, the electron beam directions are parallel to the axis of the {011} with g = (200).

    图 2  (a) 辐照诱导缺陷平均尺寸随辐照时间的变化; (b) 经15 min电子辐照后, 3种不同辐照温度下缺陷尺寸分布; (c) 辐照诱导缺陷密度随辐照时间的变化

    Figure 2.  (a) Variation of average size of irradiation induced defects with irradiation time; (b) the size distribution of defects at three different irradiation temperatures after 15 min electron irradiation; (c) variation of irradiation induced defect density with irradiation time.

    图 3  在723 K温度下, 原位电子辐照过程中具体的位错行为 (a1)—(a5)弗兰克位错环的合并过程; (b1)—(b5)长条状弗兰克位错环的湮灭过程; (c1)—(c5) “马蹄形”缺陷的形成过程; (d), (e)分别为图(a)中1, 2两个位错环在合并过程中尺寸随辐照时间的变化; (f)两位错合并后, 位错的生长行为与尺寸随辐照时间的变化

    Figure 3.  Specific dislocation behavior during in-situ electron irradiation at 723 K: (a1)–(a5) The merging process of Frank loops; (b1)–(b5) the annihilation process of long Frank loops, (c1)–(c5) the formation process of “horseshoe” defect; (d), (e) the size changes of the two dislocation loops 1 and 2 in panel (a) with irradiation time during the merging process, respectively; (f) the growth behavior and size of two dislocations combined with irradiation time.

    图 4  不同温度下, 电子辐照诱导缺陷的饱和密度(a)、生长率(b)与温度的倒数的关系以及相对应的最小二乘法拟合结果

    Figure 4.  Relationship between the reciprocal of temperature and saturation density (a), growth rate (b) of electron irradiation induced defects at different temperatures and the corresponding least square fitting results.

    图 5  (a)弗兰克不全位错与全位错形成与生长的过程; (b)沿两个晶面生长的弗兰克位错环与全位错长轴方向的尺寸随辐照时间的变化; (c)不同类型的位错环在基体中的形貌与分布

    Figure 5.  (a) Production and growth of Frank loops and perfect loops; (b) variation of the size of Frank loop and perfect loop in the long axis with irradiation time; (c) the morphology and distribution of different types of dislocation rings in matrix.

    图 6  FeCoCrNiAl0.3高熵合金在原位电子辐照过程中缺陷的产生与生长的HRTEM

    Figure 6.  HRTEM images of defect generation and growth in FeCoCrNiAl0.3 high entropy alloy during in-situ electron irradiation.

    图 7  (a), (b)辐照诱导空位型位错环HRTEM; (c) 图(a)中的空位型位错环示意图

    Figure 7.  (a), (b) HRTEM image of vacancy-type dislocation loop induced by irradiation; (c) schematic diagram of vacancy-type dislocation loop in panel (a).

    图 8  (a)室温条件下辐照过程中FeCoCrNiAl0.3高熵合金的HRTEM; (b), (c)辐照诱导与基体呈共格关系析出相

    Figure 8.  (a) HRTEM image of FeCoCrNiAl0.3 high entropy alloy irradiated at room temperature; (b), (c) the precipitates induced by irradiation coherent with matrix.

    表 1  三种不同温度下经电子辐照诱导缺陷的饱和密度与生长率

    Table 1.  Saturation density and growth rate of defects induced by electron irradiation at three different temperatures.

    温度/K 饱和密度/(1021 m–3) 生长率(nm·min–1)
    673 8.25 0.63
    723 3.01 1.673
    773 2.48 3.228
    DownLoad: CSV

    表 2  部分纯金属与核能系统候选材料的点缺陷迁移能数据

    Table 2.  Point defect migration energy data of some pure metals and candidate materials for nuclear power system.

    材料 空位迁移能
    $ {E}_{{\mathrm{m}}}^{{\mathrm{v}}} $/eV
    间隙原子
    迁移能 $ {E}_{{\mathrm{m}}}^{{\mathrm{i}}} $/eV
    Fe 0.7 0.26
    Cu 0.3 0.12
    Au 0.44 0.19
    Al 0.29 0.08
    Ni 0.6 0.18
    Fe-10Cr 0.66
    F82H 1.2 0.3
    V-4Cr-Ti 1.0 0.5
    316L 1.07
    FeCoCrNiAl0.3* 1.47* 1.09*
    注: *为本文工作
    DownLoad: CSV
    Baidu
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    张勇 2010非晶和高熵合金 (北京: 科学出版社)

    Zhang Y 2010 Amorphous and High Entropy Alloys (Beijing: Science Press

    [3]

    田震, 李聪聪, 吴渊, 吕昭平 2024 材料工程 52 1Google Scholar

    Tian Z, Li C C, Wu Y, Lü Z P 2024 J. Mater. Eng. 52 1Google Scholar

    [4]

    Cheng Z Y, Sun J R, Gao X, Wang Y Y, Cui J H, Wang T, Chang H L 2023 J. Alloy. Compd. 930 166768Google Scholar

    [5]

    Zhang Y W, Osetsky Y N, Weber W J 2021 Chem. Rev. 122 789Google Scholar

    [6]

    Li D Y, Li C X, Feng T, Zhang Y D, Sha G, Lewandowski J J, Liaw P K, Zhang Y 2017 Acta Mater. 123 285Google Scholar

    [7]

    Ma S G, Zhang S F, Qiao J W, Wang Z H, Gao M C, Jiao Z M, Yang H J, Zhang Y 2014 Intermetallics 54 104Google Scholar

    [8]

    Li Z, Zhao S, Diao H, Liaw P K, Meyers M A 2017 Sci. Rep. 7 42742Google Scholar

    [9]

    Gwalani B, Gorsse S, Choudhuri D, Zheng Y F, Mishra R S, Banerjee R 2019 Scr. Mater. 162 18Google Scholar

    [10]

    Chen W Y, Liu X, Chen Y R, Yeh J W, Tseng K K, Natesan K 2018 J. Nucl. Mater. 510 421Google Scholar

    [11]

    Chen W Y, Kirk M A, Hashimoti N, Yeh J W, Liu X, Chen Y R 2020 J. Nucl. Mater. 539 152324Google Scholar

    [12]

    Diao S Z, Liu Q, Zhang Y, Wan F R, Zhan Q 2024 Mater. Charact. 212 113964.Google Scholar

    [13]

    Yang T F, Guo W, Poplawsky J D, Li D Y, Wang L, Li Y, Hu W Y, Crespillo M L, Yan Z F, Zhang Y 2020 Acta Mater. 188 1Google Scholar

    [14]

    Kiritani M 1994 J. Nucl. Mater. 216 220Google Scholar

    [15]

    Bourret A 1971 Phys. Status Solidi A. 4 813Google Scholar

    [16]

    Urban K, Wilkens M 1971 Phys. Status Solidi A. 6 173Google Scholar

    [17]

    Liu P P, Jiang S N, Du Y F, Zhan Q, Zhao H F, Han W T, Yi X O, Ohnuki S, Wan F R 2021 Mater. Charact. 174 111014Google Scholar

    [18]

    Schäublin R, Henry J, Dai Y 2008 C. R. Phys. 9 389Google Scholar

    [19]

    Kiritani M, Yoshida N, Takata H, Maehara Y 1975 J. Phys. Soc. Jpn. 38 1677Google Scholar

    [20]

    Kiritani M, Takata H, Moriyama K, Fujita F E 1979 Philos. Mag. A 40 779Google Scholar

    [21]

    Kiritani M, Takata H 1978 J. Nucl. Mater. 69 277Google Scholar

    [22]

    Liu P P, Bai J W, Ke D, Wan F R, Wang Y B, Wang Y M, Ohnuki S, Zhan Q 2012 J. Nucl. Mater. 423 47Google Scholar

    [23]

    Kato T, Takahashi H, Izumiya M 1991 Mater. Trans. 32 921Google Scholar

    [24]

    Hayashi T, Fukumoto K, Matsui H 2002 J. Nucl. Mater. 307 951Google Scholar

    [25]

    Hashimoto N, Tanimoto J, Kubota T, Kinoshita H, Ohnuki S 2013 J. Nucl. Mater. 442 S796Google Scholar

    [26]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [27]

    Zhang B Z, Zhang Z, Xun K H, Asta M, Ding J, Ma E 2024 Proc. Nati. Acad. Sci. 121 e2314248121Google Scholar

    [28]

    Liu H C, Mitchell T 1982 J. Nucl. Mater. 107 318Google Scholar

    [29]

    He M R, Wang S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2016 Scr. Mater. 125 5Google Scholar

    [30]

    Wang X X, Niu L L, Wang S 2018 J. Nucl. Mater. 501 94Google Scholar

    [31]

    Brown L, Spring M, Ipohorski M 1971 Philos. Mag. 24 1495Google Scholar

    [32]

    Nakanishi D, Kawabata T, Doihara K, Okita T, Itakua M, Suziki K 2018 Philos. Mag. 98 3034Google Scholar

    [33]

    Lu C Y, Niu L L, Chen N J, Jin K, Yang T N, Xiu P Y, Zhang Y W, Gao F, Bei H B, Shi S 2016 Nat. Commun. 7 13564Google Scholar

    [34]

    He M R, Wang S, Shi S, Jin K, Bei H B, Yasuda K, Matsumura S, Higashida K, Robertson I M 2017 Acta Mater. 126 182Google Scholar

  • [1] Shen Zi-Qin, Ai De-Sheng, Lü Sha-Sha, Gao Jie, Lai Wen-Sheng, Li Zheng-Cao. OKMC simulation of matrix defect evolution of Fe-C Alloy under irradiation. Acta Physica Sinica, 2022, 71(16): 168703. doi: 10.7498/aps.71.20220090
    [2] Zhou Shu-Xing, Fang Ren-Feng, Wei Yan-Feng, Chen Chuan-Liang, Cao Wen-Yu, Zhang Xin, Ai Li-Kun, Li Yu-Dong, Guo Qi. Structure parameters design of InP based high electron mobility transistor epitaxial materials to improve radiation-resistance ability. Acta Physica Sinica, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [3] He Wei-Di, Zhang Pei-Yuan, Liu Xiang, Tian Xue-Fen, Fu Xin-Ge, Deng Ai-Hong. Defects in H/He neutral beam irradiated potassium doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [4] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [5] Li Wei-Qin, Hao Jie, Zhang Hai-Bo. Surface potential dynamic characteristics of the insulating sample under high-energy electron irradiation. Acta Physica Sinica, 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [6] Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [7] Ji Le, Yang Sheng-Zhi, Cai Jie, Li Yan, Wang Xiao-Tong, Zhang Zai-Qiang, Hou Xiu-Li, Guan Qing-Feng. Damage and structural defects in the surface lager of pure molybdenum induced by high-current pulsed electron beam. Acta Physica Sinica, 2013, 62(23): 236103. doi: 10.7498/aps.62.236103
    [8] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [9] Han Lu-Hui, Zhang Chong-Hong, Zhang Li-Qing, Yang Yi-Tao, Song Yin, Sun You-Mei. X-ray photoelectron spectroscopy study on GaN crystal irradiated by slow highly charged ions. Acta Physica Sinica, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [10] Zou Hui, Jing Hong-Yang, Wamg Zhi-Ping, Guan Qing-Feng. The vacancy defect clusters in polycrystalline pure nickle induced by high-current pulsed electron beam. Acta Physica Sinica, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [11] Zhou Kai, Li Hui, Wang Zhu. Defects in proton-irradiated Zn-doped GaSb studied by positron annihilation and photoluminescence. Acta Physica Sinica, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [12] Guan Qing-Feng, Cheng Du-Qing, Qiu Dong-Hua, Zhu Jian, Wang Xue-Tao, Cheng Xiu-Wei. The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [13] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [14] Hou Bi-Hui, Lu Xiao-Pu, Shi Chao-Shu, Yang Bing-Xin. . Acta Physica Sinica, 1995, 44(8): 1296-1301. doi: 10.7498/aps.44.1296
    [15] LIU FANG-XIN, ZHANG CHEN-HUA, JIN SI-ZHA0, XUAN ZHI-HUA, LI ZONG-MING. ELECTRON SPIN RESONANCE STUDY ON RADIOLYTIC DEFECT IN OPTICAL FIBER. Acta Physica Sinica, 1994, 43(11): 1871-1875. doi: 10.7498/aps.43.1871
    [16] GAO YU-ZUN, S. OHNUKI, H. TAKAHASHI, Y. SATO, T. TAKEYAMA. THE EFFECT OF HYDROGEN IMPLANTATION ON ELECTRON IRRADIATED DEFECTS AND BLISTER FORMATION IN SILICON SINGLE CRYSTAL. Acta Physica Sinica, 1988, 37(1): 152-156. doi: 10.7498/aps.37.152
    [17] PENG CHEN, SUN HENG-HUI. THE BULK AND INTERFACE DEFECTS IN ELECTRON IRRADIATED InP. Acta Physica Sinica, 1987, 36(11): 1408-1415. doi: 10.7498/aps.36.1408
    [18] LU FANG, SUN HENG-HUI, HUANG YUN, SHENG CHI, ZHANG ZENG-GUANG, WANG LIANG. STUDY OF THE DEFECTS IN SILICON PRODUCED BY HIGH TEMPERATURE ELECTRON IRRADIATION. Acta Physica Sinica, 1987, 36(6): 745-751. doi: 10.7498/aps.36.745
    [19] WU FENG-MEI, LAI QI-JI, SHEN BO, ZHOU GUO-QUAN. A STUDY OF ELECTRON IRRADIATION-INDUCED DEFECTS IN Si LAYERS. Acta Physica Sinica, 1986, 35(5): 638-642. doi: 10.7498/aps.35.638
    [20] DU YONG-CHANG, ZHANG YU-FENG, QIN GUO-GANG, MENG XIANG-TI. DEEP LEVEL DEFECTS RELATED TO HYDROGEN IN NEUTRON IRRADIATED SILICON CONTAINING HYDROGEN. Acta Physica Sinica, 1984, 33(4): 477-485. doi: 10.7498/aps.33.477
Metrics
  • Abstract views:  576
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2024
  • Accepted Date:  10 January 2025
  • Published Online:  05 April 2025

/

返回文章
返回
Baidu
map