搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能电子辐照绝缘厚样品的表面电位动态特性

李维勤 郝杰 张海波

引用本文:
Citation:

高能电子辐照绝缘厚样品的表面电位动态特性

李维勤, 郝杰, 张海波

Surface potential dynamic characteristics of the insulating sample under high-energy electron irradiation

Li Wei-Qin, Hao Jie, Zhang Hai-Bo
PDF
导出引用
  • 采用数值计算和实验测量相结合的方法, 阐明了高能电子束照射下绝缘厚样品的表面电位和电子产额动态特性. 结果表明: 由于电子在样品内部的散射和输运, 沿着深度方向, 空间电位先缓慢下降到最小值, 然后逐渐升高并趋近于零; 随着电子束照射, 样品的表面电位逐渐下降, 可至负千伏量级, 电子总产额逐渐增大至一个接近于1的稳定值; 电子束停止照射后, 长时间放置下, 表面电位将逐渐升高, 但带电并不会消除; 表面电位随电子束能量的升高近似线性下降, 随入射角的增大而升高, 而随样品厚度的增大仅略有下降.
    The surface potential and electron yield dynamic characteristics of an insulating thick sample under high-energy electron beam irradiation are obtained by combining the numerical simulation and experimental measurement. The numerical model takes into account the electron scattering, charge trapping, and charge transport. The results show that due to the electron scattering and transport, the space charge is weakly positive in the near surface and strongly negative inside sample; along the depth direction, the space potential decreases to a minimum value slowly, and then increases gradually and finally tends to zero; with the electron beam irradiation, the surface potential decreases to the negative kV magnitude gradually, and the total electron yield gradually increases to a stable value that is slightly less than unity. After stopping irradiation, the surface potential increases gradually, but charges are not eliminated completely. The surface potential decreases linearly with the increase of the beam energy, and increases with the increase of the incident angle, however it decreases slightly with the increase of the sample thickness.
    • 基金项目: 国家自然科学基金(批准号: 11175140)和陕西省自然科学基金(批准号: 2013JM8001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175140) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM8001).
    [1]

    Reimer L 1993 Image Formation in Low Voltage Scanning Electron Microscopy (Bellingham: SPIE Optical Engineering Press) p71

    [2]

    Baer D R, Lea A S, Geller J D, Hammond J S, Kover L, Powell C J, Seah M P, Suzuki M, Watts J F, Wolstenholme J 2010 J. Electron Spectrosc. Relat. Phenom. 176 80

    [3]

    Belhaj M, Paulmier T, Hanna R, Arnaout M, Balcon N, Payan D, Puech J 2014 Nucl. Instrum. Meth. B 320 46

    [4]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielectr. Electr. Insul. 16 682

    [5]

    Sessler G M 1998 Electrets (New York: Springer-Verlag) p22

    [6]

    Sarrailh P, Mateo-Velez J C, Roussel J F, Dirassen B, Forest J, Thiebault B, Rodgers D, Hilgers A 2012 IEEE Trans. Plasma Sci. 40 368

    [7]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [8]

    Quan R H, Han J W, Zhang Z L 2013 Acta Phys. Sin. 62 245205 (in Chinese) [全荣辉, 韩建伟, 张振龙 2013 62 245205]

    [9]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [10]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [11]

    Cornet N, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110

    [12]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostat. 67 695

    [13]

    Rau E I, Fakhfakh S, Andrianov M V, Evstafeva E N, Jbara O, Rondot S, Mouze Z 2008 Nucl. Instrum. Meth. B 266 719

    [14]

    Balcon N, Payan D, Belhaj M, Tondu T, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282

    [15]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482

    [16]

    Li W Q, Zhang H B 2010 Micron 41 416

    [17]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [18]

    Li W Q, Zhang H B, Lu J 2012 Acta Phys. Sin. 61 027302 (in Chinese) [李维勤, 张海波, 鲁君 2012 61 027302]

    [19]

    Czyźewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [20]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487

    [21]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [22]

    Li Y G, Mao S F, Li H M, Xiao S M, Ding Z J 2008 J. Appl. Phys. 104 064901

    [23]

    Mao S F, Ding Z J 2010 Surf. Interf. Anal. 42 1096

    [24]

    Da B, Mao S F, Zhang G H, Ding Z J 2012 J. Appl. Phys. 112 034310

    [25]

    Desalvot A, Rosa R 1987 J. Phys. D 20 790

    [26]

    Penn D R 1987 Phys. Rev. B 35 482

    [27]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [28]

    Rau E I 2008 Appl. Surf. Sci. 254 2110

    [29]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [30]

    Li J J, Zhang H B, Feng R J 2007 J. Phys. D 40 826

  • [1]

    Reimer L 1993 Image Formation in Low Voltage Scanning Electron Microscopy (Bellingham: SPIE Optical Engineering Press) p71

    [2]

    Baer D R, Lea A S, Geller J D, Hammond J S, Kover L, Powell C J, Seah M P, Suzuki M, Watts J F, Wolstenholme J 2010 J. Electron Spectrosc. Relat. Phenom. 176 80

    [3]

    Belhaj M, Paulmier T, Hanna R, Arnaout M, Balcon N, Payan D, Puech J 2014 Nucl. Instrum. Meth. B 320 46

    [4]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielectr. Electr. Insul. 16 682

    [5]

    Sessler G M 1998 Electrets (New York: Springer-Verlag) p22

    [6]

    Sarrailh P, Mateo-Velez J C, Roussel J F, Dirassen B, Forest J, Thiebault B, Rodgers D, Hilgers A 2012 IEEE Trans. Plasma Sci. 40 368

    [7]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [8]

    Quan R H, Han J W, Zhang Z L 2013 Acta Phys. Sin. 62 245205 (in Chinese) [全荣辉, 韩建伟, 张振龙 2013 62 245205]

    [9]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [10]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [11]

    Cornet N, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110

    [12]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostat. 67 695

    [13]

    Rau E I, Fakhfakh S, Andrianov M V, Evstafeva E N, Jbara O, Rondot S, Mouze Z 2008 Nucl. Instrum. Meth. B 266 719

    [14]

    Balcon N, Payan D, Belhaj M, Tondu T, Inguimbert V 2012 IEEE Trans. Plasma Sci. 40 282

    [15]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482

    [16]

    Li W Q, Zhang H B 2010 Micron 41 416

    [17]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [18]

    Li W Q, Zhang H B, Lu J 2012 Acta Phys. Sin. 61 027302 (in Chinese) [李维勤, 张海波, 鲁君 2012 61 027302]

    [19]

    Czyźewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [20]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487

    [21]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [22]

    Li Y G, Mao S F, Li H M, Xiao S M, Ding Z J 2008 J. Appl. Phys. 104 064901

    [23]

    Mao S F, Ding Z J 2010 Surf. Interf. Anal. 42 1096

    [24]

    Da B, Mao S F, Zhang G H, Ding Z J 2012 J. Appl. Phys. 112 034310

    [25]

    Desalvot A, Rosa R 1987 J. Phys. D 20 790

    [26]

    Penn D R 1987 Phys. Rev. B 35 482

    [27]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [28]

    Rau E I 2008 Appl. Surf. Sci. 254 2110

    [29]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [30]

    Li J J, Zhang H B, Feng R J 2007 J. Phys. D 40 826

  • [1] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟.  , 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [2] 李维勤, 霍志胜, 蒲红斌. 电介质/半导体结构样品电子束感生电流瞬态特性.  , 2020, 69(6): 060201. doi: 10.7498/aps.69.20191543
    [3] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟.  , 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [4] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响.  , 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [5] 封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳. 电子辐照电介质样品带电泄放弛豫特性研究.  , 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [6] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟.  , 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [7] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟.  , 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [8] 李维勤, 刘丁, 张海波. 高能电子照射绝缘样品的泄漏电流特性.  , 2014, 63(22): 227303. doi: 10.7498/aps.63.227303
    [9] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响.  , 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [10] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究.  , 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [11] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟.  , 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究.  , 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [13] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究.  , 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [14] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟.  , 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [15] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟.  , 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [17] 李维勤, 张海波. 低能电子束照射接地绝缘薄膜的负带电过程.  , 2008, 57(5): 3219-3229. doi: 10.7498/aps.57.3219
    [18] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [19] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成.  , 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [20] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟.  , 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
计量
  • 文章访问数:  6023
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-05
  • 修回日期:  2014-11-16
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map