-
Flexible piezoelectric materials can convert mechanical energy into electrical energy to power micro/nano electronic devices. In recent years, research into piezoelectric technologies has revealed that molybdenum disulfide (MoS2) can enhance the piezoelectric properties of composite materials. This paper presents the fabrication of a PAN/MoS2 flexible composite nanofiber film piezoelectric sensor via electrospinning. The influence of MoS2 nanosheet content on the piezoelectric performance of the PAN/MoS2 composite nanofiber films is systematically investigated, and the morphology and structure of the composite nanofiber films are characterized. The results show that MoS2 is uniformly distributed in the composite nanofiber films, and the zigzag conformation of the PAN molecular was enhanced with the addition of MoS2. As the MoS2 doping content increases, the performance of the PAN/MoS2 composite nanofiber film sensor shows a trend of first increasing and then decreasing, reaching the maximum value when the MoS2 content is 3.0 wt%. When the MoS2 doping content increases from 0 wt% to 3.0 wt%, the open-circuit output voltage of the PAN/MoS2 composite nanofiber film sensor increases from 1.92 V to 4.64 V, and the short-circuit output current increases from 1.03 μA to 2.69 μA. At 3.0 wt% MoS2 doping, the maximum output power of the PAN/MoS2 composite nanofiber film sensor reaches 3.46 μW, with an internal resistance of approximately 10 MΩ. The output voltage of the composite nanofiber film sensor increases with the applied external force. At a frequency of 10 Hz, when external forces of 2 N, 3 N, 4 N, 5 N, and 6 N are applied, the sensor output voltages are 2 V, 3.4 V, 5.9 V, 8.7 V, and 10.3 V, respectively. Compared with pure PAN, the piezoelectric constant d33 of the PAN/MoS2 composite nanofiber film increases by 4.86 times. The PAN/MoS2 composite nanofiber film sensor can efficiently charge commercial capacitors, and the discharged capacitors can successfully power a green LED. Additionally, it can monitor in real-time, under passive conditions, the bending state of the knee and the forward movement of the bicycle wheel during cycling. After 10,000 impact cycles, the PAN/MoS2 composite nanofiber film sensor shows stable voltage output with no obvious fluctuations, demonstrating excellent stability. Overall, the PAN/MoS2 flexible composite nanofiber film sensor exhibits outstanding flexibility, low cost, and self-powered capabilities, showing promising potential for applications in wearable/portable electronics, smart devices, and intelligent robotics.
-
Keywords:
- PAN /
- Molybdenum disulfide /
- Flexible Nanofiber film /
- Piezoelectric sensor
-
[1] Rjafallah A, Hajjaji A, Guyomar D, Kandoussi K, Belhora F, Boughaleb Y 2018. J. Compos. Mater. 53 613
[2] Chen C, Wen Z, Shi J, Jian X, Li P, Yeow J T W, Sun X 2020. Nat. Commun. 11 4143
[3] Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra Y K, Kim H J 2023Nano Energy 115 10872
[4] Xu Q, Wen J, Qin Y. 2021. Nano Energy 86 106080
[5] Korkmaz S, Kariper İ A. 2021Nano Energy 84 105888
[6] Panda S, Hajra S, Kim H G, Achary P G R, Pakawanit P, Yang Y, Mishra Y K, Kim H J. 2023ACS Appl. Mater. Interfaces. 15 36096
[7] Satyaranjan B, Shahid-ul-Islam M, Mulvihill D M, Wazed A. 2023Nano Energy 111 108414
[8] Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H, Zhang W, Wu R, Huang Y, Lei Z. 2023 Polymers 15 2766
[9] Ma X, Zhukov S, von Seggern H, Sessler G M, Ben Dali O, Kupnik M, Dai Y, He P, Zhang X 2023Adv. Electron. Mater. 9 2201070
[10] Qi F, Xu L, He Y, Yan H, Liu H 2023Cryst. Res. Technol. 58 2300119
[11] Guo H, Li L, Wang F, Kim S, Sun H 2022ACS Appl. Mater. Interfaces. 14 34733
[12] Bhadwal N, Ben Mrad R, Behdinan K 2023Nanomaterials 13 3170
[13] Tao J, Wang Y, Zheng X, Zhao C, Jin X, Wang W, Lin T 2023Nano Energy 118 108987
[14] Song K, Zhao R, Wang Z L, Yang Y 2019Adv. Mater. 31 1902831
[15] Kim M, Fan J 2021Adv. Fiber Mater. 3 160
[16] Bhatt A, Singh V, Bamola P, Aswal D, Rawat S, Rana S, Dwivedi C, Singh B, Sharma H 2023J. Alloys Compd. 960 170664
[17] Srivastava M, Banerjee S, Bairagi S, Singh P, Kumar B, Singh P, Kale R D, Mulvihill D M, Ali S W 2024Chem. Eng. J. 480 147963
[18] Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G, Popov S V, Taylor J R, Hasan T 2015Nano Res 8 1522
[19] Aji A S, Nishi R, Ago H, Ohno Y 2020Nano Energy 68 105242
[20] Evans J M, Lee K S, Yan E X, Thompson A C, Morla M B, Meier M C, Ifkovits Z P, Carim A I, Lewis N S 2022ACS Mater. Lett. 4 1475
[21] Maity K, Mahanty B, Sinha T K, Garain S, Biswas A, Ghosh S K, Manna S, Ray S K, Mandal D 2017Energy Technol. 5 234
[22] Han S A, Kim T H, Kim S K, Lee K H, Ho H J, Lee J H, Kim S W 2018Adv. Mater. 30 1801134
[23] Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015Nat. Nanotechnol. 10 151
[24] Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014Nature 514 470
[25] Jiang L, Xie H, Hou Y, Wang S, Xia Y, Li Y, Hu G H, Yang Q L, Xiong C, Gao Z D 2019Ceram Int 45 11347
[26] Chen S L, Li J L, Song Y H, Yang Q L, Shi Z Q, Xiong C X 2021Cellulose 28 6513
[27] Cao S, Zou H, Jiang B, Li M, Yuan Q 2022Nano Energy 102 107635
[28] Singh A K, Kumar P, Late D, Kumar A, Patel S, Singh J 2018Appl Mater Today 13 242
[29] Yin R Y, Li Y H, Li W D, Gao F, Chen X, Li T, Liang J, Zhang H, Gao H, Li P, Zhou Y 2024Nano Energy 124 109488
[30] Han Y, Huang D, Ma Y, He G, Hu J, Zhang J, Hu N, Su Y, Zhou Z, Zhang Y, Yang Z 2018ACS Appl. Mater. Interfaces. 10 22640
[31] Zhang J, Han D, Wang Y, Wang L, Chen X, Qiao X, Yu X 2020Microchim. Acta 187 321
[32] Li X, Li Y, Li Y, Tan J, Zhang J, Zhang H, Liang J, Li T, Liu Y, Jiang H, Li P 2022ACS Appl. Mater. Interfaces. 14 46789
[33] Wang W, Zheng Y, Jin X, Sun Y, Lu B, Wang H, Fang J, Shao H, Lin T 2019Nano Energy 56 588
[34] Ren X, Fan H, Zhao Y, Liu Z 2016ACS Appl. Mater. Interfaces. 8 26190
[35] Li Y, Su X, Liang K, Luo C, Li P, Hu J, Li G, Jiang H, Wang K 2021Microelectron Eng 244 111557
[36] Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, F Rehman, Cao M, Jin H 2015Nanoscale 7 15734
[37] Zhang W, Zhang V, Wu H, Yan H, Qi S 2018J Alloys Compd 751 34
[38] Bowen C R, Kim H A, Weaver P M, Dunn S 2014Energy Environ Sci 7 25
[39] Luo C, Hu S, Xia M, Li P, Hu J, Li G, Jiang H, Zhang W 2018Energy Technol 6 922
Metrics
- Abstract views: 134
- PDF Downloads: 3
- Cited By: 0