搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计

周书星 方仁凤 魏彦锋 陈传亮 曹文彧 张欣 艾立鹍 李豫东 郭旗

引用本文:
Citation:

磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计

周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗

Structure parameters design of InP based high electron mobility transistor epitaxial materials to improve radiation-resistance ability

Zhou Shu-Xing, Fang Ren-Feng, Wei Yan-Feng, Chen Chuan-Liang, Cao Wen-Yu, Zhang Xin, Ai Li-Kun, Li Yu-Dong, Guo Qi
PDF
HTML
导出引用
  • 为研究磷化铟高电子迁移率晶体管(InP HEMT)外延结构材料的抗电子辐照加固设计的效果, 本文采用气态源分子束外延法制备了系列InP HEMT外延结构材料. 针对不同外延结构材料开展了1.5 MeV电子束辐照试验, 在辐照注量为2 × 1015 cm–2条件下, 并测试了InP HEMT外延结构材料二维电子气辐照前后的电学特性, 获得了辐照前后不同外延结构InP HEMT材料二维电子气归一化浓度和电子迁移率随外延参数的变化规律, 分析了InP HEMT二维电子气辐射损伤与Si-δ掺杂浓度、InGaAs 沟道厚度和沟道In组分以及隔离层厚度等结构参数的关系. 结果表明: Si-δ掺杂浓度越大, 隔离层厚度较薄, InGaAs 沟道厚度较大, 沟道In组分低的InP HEMT外延结构二维电子气辐射损伤相对较低, 具有更强的抗电子辐照能力. 经分析原因如下: 1)电子束与材料晶格发生能量传递, 破坏晶格完整性, 且在沟道异质界面引入辐射诱导缺陷, 增加复合中心密度, 散射增强导致二维电子气迁移率和浓度降低; 2)高浓度Si-δ掺杂和薄隔离层有利于提高量子阱二维电子气浓度, 降低二维电子气受辐射损伤的影响; 3)高In组分应变沟道有利于提高二维电子气迁移率, 但辐照后更容易应变弛豫产生位错缺陷, 导致二维电子气迁移率显著下降.
    In order to improve the radiation-resistance ability of the InP based high electron mobility transistor (InP HEMT) by optimizing the epitaxial structure design, a series of InP HEMT epitaxial structure materials with different structure parameters is grown by gas source molecular beam epitaxy. These samples are irradiated at room temperature by a 1.5-MeV electron beam at the same irradiation fluence of 2 × 1015 cm–2. The electrical properties of the two-dimensional electron gas (2DEG) for InP HEMT epitaxial materials before and after irradiation are measured by Hall measurements to obtain the changes of the normalized 2DEG density and electron mobility along with the epitaxial structure parameters. The relation between 2DEG radiation damage and epitaxial structure parameters (such as Si-δ-doping density, spacer thickness, channel thickness and channel In content) of InP HEMT epitaxial structure materials is analyzed. The results show that the 2DEG of the InP HEMT epitaxial structure material with higher Si-δ-doping density, thinner spacer thickness, thicker channel thickness and lower channel In content has lower radiation damage, which possesses the stronger radiation-resistance ability.
      通信作者: 周书星, sxzhou2020@163.com
    • 基金项目: 国家自然科学基金(批准号: 11705277, 61434006)和湖北文理学院博士科研启动基金 (批准号: kyqdf2059038)资助的课题.
      Corresponding author: Zhou Shu-Xing, sxzhou2020@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705277, 61434006) and the Doctoral Research Foundation Project of Hubei University of Arts and Science, China (Grant No. kyqdf2059038).
    [1]

    Cha E, Wadefalk N, Moschetti G, Pourkabirian A, Stenarson J, Grahn J 2020 IEEE Electron Device Lett. 41 1005Google Scholar

    [2]

    Hamada H, Tsutsumi T, Matsuzaki H, Fujimura T, Abdo I, Shirane A, Okada K, Itami G, Song H J, Sugiyama H, Nosaka H 2020 IEEE J. Solid-State Circuits 55 2316Google Scholar

    [3]

    Sato M, Niida Y, Suzuki T, Nakasha Y, Kawano Y, Iwai T, Hara N, Joshin K 2017 IEICE Trans. Electron. E100C 417Google Scholar

    [4]

    Tang J J, Liu G P, Zhao G J, Xing S, Malik S A 2020 J. Vac. Sci. Technol. B 38 023202Google Scholar

    [5]

    Tang J J, Liu G P, Song J Y, Zhao G J, Yang J H 2021 Chin. Phys. B 30 027303Google Scholar

    [6]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 58 1161Google Scholar

    Gu W, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [7]

    Ives N E, Chen J, Witulski A F, Schrimpf R D, Fleetwood D M, Bruce R W, McCurdy M W, Zhang E X, Massengill L W 2015 IEEE Trans. Nucl. Sci. 62 2417Google Scholar

    [8]

    Fleetwood D M 2015 IEEE Trans. Nucl. Sci. 62 1462Google Scholar

    [9]

    Sun S X, Ding P, Jin Z, Zhong Y H, Li Y X, Wei Z C 2019 Nanomaterials 9 967Google Scholar

    [10]

    Daoudi M, Kaouach H, Hosni F 2016 Optik 127 7188Google Scholar

    [11]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 70 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102Google Scholar

    [12]

    Sun S X, Yang B, Zhong Y H, Li Y X, Ding P, Jin Z, Wei Z C 2020 J. Phys. D: Appl. Phys. 53 175107Google Scholar

    [13]

    Warner J H, McMorrow D, Buchner S, Boos J B, Roche N, Paillet P, Gaillardin M, Blackmore E, Trinczek M, Ramachandran V, Reed R A, Schrimpf R D 2013 IEEE Trans. Nucl. Sci. 60 2651Google Scholar

    [14]

    Pearton S J, Ren F, Patrick E, Law M E, Polyakov A Y 2016 ECS J. Solid State Sci. Technol. 5 Q35Google Scholar

    [15]

    Lin L B, Liao Z, Liu Q, Lu T, Feng X 2002 Surf. Coat. Technol. 158 737Google Scholar

    [16]

    林理彬, 李有梅, 陈卫东, 蒋锦江, 孔梅影 1995 四川大学学报 (自然科学版) 32 39

    Lin L B, Li Y M, Chen W D, Jiang J J, Kong M Y 1995 J. Sichuan Univ. (Nat. Sci. Ed.) 32 39

    [17]

    Tang J J, Liu G P, Mao B Y, Ali S, Zhao G J, Yang J H 2021 Phys. Lett. A 410 127527Google Scholar

    [18]

    Zhang Z, Cardwell D, Sasikumar A, Kyle E C H, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, Speck J S, Arehart A R, Ringel S A 2016 J. Appl. Phys. 119 165704Google Scholar

    [19]

    Smith M D, O'Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

    [20]

    Zhong Y H, Yang B, Chang M M, Ding P, Ma L H, Li M K, Duan Z Y, Yang J, Jin Z, Wei Z C 2020 Chin. Phys. B 29 038502Google Scholar

    [21]

    Zhou S X, Qi M, Ai L K, Xu A H, Wang L D, Ding P, Jin Z 2015 Chin. Phys. Lett. 32 097101Google Scholar

    [22]

    Klaassen D B M 1992 Solid-State Electron. 35 961Google Scholar

    [23]

    玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 汪波, 曾骏哲 2015 64 154217Google Scholar

    Ma L Y, Li Y D, Guo Q, Ai E, Wang H J, Zeng J 2015 Acta Phys. Sin. 64 154217Google Scholar

    [24]

    Anderson N G, Laidig W D, Kolbas R M, Lo Y C 1986 J. Appl. Phys. 60 2361Google Scholar

  • 图 1  V90型气态源分子束外延生长系统

    Fig. 1.  V90 gas source molecular beam epitaxy growth system.

    图 2  InP HEMT结构材料TEM分析图

    Fig. 2.  TEM analysis diagram of InP HEMT structural material.

    图 3  电子辐照对不同δ掺杂浓度InP HEMT二维电子气浓度和电子迁移率的归一化影响 (a)室温; (b) 77 K

    Fig. 3.  Normalized 2DEG density (n) and electron mobility (u) versus δ-doping density measured at (a) room-temperature and (b) 77 K irradiated by electron beam.

    图 4  电子辐照对不同隔离层厚度InP HEMT二维电子气浓度和电子迁移率的归一化影响 (a)室温; (b) 77 K

    Fig. 4.  Normalized 2DEG density (n) and electron mobility (u) versus spacer layer thickness measured at (a) room-temperature and (b) 77 K irradiated by electron beam.

    图 5  电子辐照对不同InGaAs沟道In组分InP HEMT二维电子气浓度和电子迁移率的归一化影响 (a)室温; (b) 77 K

    Fig. 5.  Normalized 2DEG density (n) and electron mobility (u) versus channel In content measured at (a) room-temperature and (b) 77 K irradiated by electron beam.

    图 6  电子辐照对不同沟道厚度InP HEMT二维电子气浓度和电子迁移率的归一化影响 (a)室温; (b) 77 K

    Fig. 6.  Normalized 2DEG density (n) and electron mobility (u) versus channel thickness measured at (a) room-temperature and (b) 77 K irradiated by electron beam.

    图 7  InGaAs/InAlAs应变异质结的外延生长及弛豫示意图 (a)两种不同晶格常数外延层; (b)应变异质结; (c)弛豫异质结

    Fig. 7.  Schematic diagram of epitaxial growth and relaxation of InGaAs/InAlAs strained heterojunction: (a) Epitaxial layers with different lattice constants; (b) strained heterojunction; (c) relaxation heterojunction.

    表 1  InP HEMT外延结构表(S.I.InP sub, 半绝缘InP衬底)

    Table 1.  Structure parameters of the InP HEMT (S.I.InP sub, semi-insulating InP substrate)

    LayerMaterialDopingThickness/nm
    Cap layer 1In0.65Ga0.35Asn+10
    Cap layer 2In0.53Ga0.47Asn+15
    Cap layer 3In0.52Al0.48Asn+15
    Etch-stopperInPun4
    Barrier layerIn0.52Al0.48Asun8
    δ-dopingSi(3—6)×1012 cm–2
    Spacer layerIn0.52Al0.48Asunhw
    ChannelInxGa1–xAsuntw
    Buffer layerIn0.52Al0.48Asun300
    S.I.InP sub
    下载: 导出CSV

    表 2  InP HEMT外延结构样品辐照前霍尔测试数据

    Table 2.  Hall data of the InP HEMT structures before irradiation


    Sample
    No.
    RT77 K
    n/
    (1012 cm–2)
    u/
    (cm2·V–1·s–1)
    n/
    (1012 cm–2)
    u/
    (cm2·V–1·s–1)
    A11.85180101.85817100
    A22.20179202.20516500
    A32.39478102.40215900
    A42.69575302.70014800
    B12.55778702.55715100
    B22.39478102.40215900
    B32.27279802.27016700
    B42.10581102.08517600
    C12.40883102.41018400
    C22.42089602.42122600
    C32.43195102.43026200
    C42.444105002.44532100
    D12.38777802.35715600
    D22.39478102.40215900
    D32.39878202.40416000
    D42.34078102.40516100
    下载: 导出CSV
    Baidu
  • [1]

    Cha E, Wadefalk N, Moschetti G, Pourkabirian A, Stenarson J, Grahn J 2020 IEEE Electron Device Lett. 41 1005Google Scholar

    [2]

    Hamada H, Tsutsumi T, Matsuzaki H, Fujimura T, Abdo I, Shirane A, Okada K, Itami G, Song H J, Sugiyama H, Nosaka H 2020 IEEE J. Solid-State Circuits 55 2316Google Scholar

    [3]

    Sato M, Niida Y, Suzuki T, Nakasha Y, Kawano Y, Iwai T, Hara N, Joshin K 2017 IEICE Trans. Electron. E100C 417Google Scholar

    [4]

    Tang J J, Liu G P, Zhao G J, Xing S, Malik S A 2020 J. Vac. Sci. Technol. B 38 023202Google Scholar

    [5]

    Tang J J, Liu G P, Song J Y, Zhao G J, Yang J H 2021 Chin. Phys. B 30 027303Google Scholar

    [6]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 58 1161Google Scholar

    Gu W, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [7]

    Ives N E, Chen J, Witulski A F, Schrimpf R D, Fleetwood D M, Bruce R W, McCurdy M W, Zhang E X, Massengill L W 2015 IEEE Trans. Nucl. Sci. 62 2417Google Scholar

    [8]

    Fleetwood D M 2015 IEEE Trans. Nucl. Sci. 62 1462Google Scholar

    [9]

    Sun S X, Ding P, Jin Z, Zhong Y H, Li Y X, Wei Z C 2019 Nanomaterials 9 967Google Scholar

    [10]

    Daoudi M, Kaouach H, Hosni F 2016 Optik 127 7188Google Scholar

    [11]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 70 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 70 116102Google Scholar

    [12]

    Sun S X, Yang B, Zhong Y H, Li Y X, Ding P, Jin Z, Wei Z C 2020 J. Phys. D: Appl. Phys. 53 175107Google Scholar

    [13]

    Warner J H, McMorrow D, Buchner S, Boos J B, Roche N, Paillet P, Gaillardin M, Blackmore E, Trinczek M, Ramachandran V, Reed R A, Schrimpf R D 2013 IEEE Trans. Nucl. Sci. 60 2651Google Scholar

    [14]

    Pearton S J, Ren F, Patrick E, Law M E, Polyakov A Y 2016 ECS J. Solid State Sci. Technol. 5 Q35Google Scholar

    [15]

    Lin L B, Liao Z, Liu Q, Lu T, Feng X 2002 Surf. Coat. Technol. 158 737Google Scholar

    [16]

    林理彬, 李有梅, 陈卫东, 蒋锦江, 孔梅影 1995 四川大学学报 (自然科学版) 32 39

    Lin L B, Li Y M, Chen W D, Jiang J J, Kong M Y 1995 J. Sichuan Univ. (Nat. Sci. Ed.) 32 39

    [17]

    Tang J J, Liu G P, Mao B Y, Ali S, Zhao G J, Yang J H 2021 Phys. Lett. A 410 127527Google Scholar

    [18]

    Zhang Z, Cardwell D, Sasikumar A, Kyle E C H, Chen J, Zhang E X, Fleetwood D M, Schrimpf R D, Speck J S, Arehart A R, Ringel S A 2016 J. Appl. Phys. 119 165704Google Scholar

    [19]

    Smith M D, O'Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

    [20]

    Zhong Y H, Yang B, Chang M M, Ding P, Ma L H, Li M K, Duan Z Y, Yang J, Jin Z, Wei Z C 2020 Chin. Phys. B 29 038502Google Scholar

    [21]

    Zhou S X, Qi M, Ai L K, Xu A H, Wang L D, Ding P, Jin Z 2015 Chin. Phys. Lett. 32 097101Google Scholar

    [22]

    Klaassen D B M 1992 Solid-State Electron. 35 961Google Scholar

    [23]

    玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 汪波, 曾骏哲 2015 64 154217Google Scholar

    Ma L Y, Li Y D, Guo Q, Ai E, Wang H J, Zeng J 2015 Acta Phys. Sin. 64 154217Google Scholar

    [24]

    Anderson N G, Laidig W D, Kolbas R M, Lo Y C 1986 J. Appl. Phys. 60 2361Google Scholar

  • [1] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究.  , 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控.  , 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [3] 周书星, 方仁风, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. InP HEMT外延结构材料抗电子辐照加固设计研究.  , 2021, (): . doi: 10.7498/aps.70.20211265
    [4] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射.  , 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [5] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展.  , 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [6] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究.  , 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [7] 杜玉峰, 崔丽娟, 李金升, 李然然, 万发荣. 铝中气泡在电子束辐照下的异常放热现象.  , 2018, 67(21): 216101. doi: 10.7498/aps.67.20181140
    [8] 吴学科, 黄伟其, 董泰阁, 王刚, 刘世荣, 秦朝介. 热退火、激光束和电子束等作用对纳米硅制备及其局域态发光特性的影响.  , 2016, 65(10): 104202. doi: 10.7498/aps.65.104202
    [9] 李杰, 高进, 万发荣. 电子束辐照下的注氘铝的结构变化.  , 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [10] 玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 曾骏哲. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究.  , 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [11] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟.  , 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [12] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能.  , 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [13] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究.  , 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [14] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究.  , 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [15] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察.  , 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [16] 赵衡煜, 俞平胜, 郭鑫, 苏良碧, 李欣年, 方晓明, 杨秋红, 徐军. 电子束辐照诱导Bi:α-BaB2O4 单晶近红外宽带发光的研究.  , 2011, 60(9): 097802. doi: 10.7498/aps.60.097802
    [17] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究.  , 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [18] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性.  , 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [19] 李东临, 曾一平. InP基HEMT器件中二维电子气浓度及分布与沟道层厚度关系的理论分析.  , 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
    [20] 周文政, 姚 炜, 朱 博, 仇志军, 郭少令, 林 铁, 崔利杰, 桂永胜, 褚君浩. 单边掺杂InAlAs/InGaAs单量子阱中二维电子气的磁输运特性.  , 2006, 55(4): 2044-2048. doi: 10.7498/aps.55.2044
计量
  • 文章访问数:  5391
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-10-07
  • 上网日期:  2022-01-18
  • 刊出日期:  2022-02-05

/

返回文章
返回
Baidu
map