Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Superradiance study of molecular clusters in different cavities formed by the tip and substrate of a scanning tunneling microscope

LIU Zhihua LYU Siyuan ZHOU Meng WANG Luxia

Citation:

Superradiance study of molecular clusters in different cavities formed by the tip and substrate of a scanning tunneling microscope

LIU Zhihua, LYU Siyuan, ZHOU Meng, WANG Luxia
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The plasmon cavity system formed by the scanning tunneling microscope tip and substrate has attracted much attention due to its ability to break through the diffraction limit, enhance the electromagnetic field by hundreds of times, and localize it at the nanometer or even sub-nanometer scale. The plasmon cavity system formed by the scanning tunneling microscope tip and substrate can serve as an advanced platform for studying superradiance phenomena at the ultrafast scale. Methylene blue molecules have a wide range of applications in the field of optics due to their significant light absorption and fluorescence emission characteristics. This article applies macroscopic quantum electrodynamics and open quantum system theory to explore the radiation dynamics of methylene blue molecular clusters with three different configurations: cyclic, two-dimensional planar, and one-dimensional chain, in specific scanning tunneling microscope nanocavity and picocavity. Taking the cyclic molecular clusters as an example, the radiation effects of different external field excitations on the molecular clusters in the cavity are studied. The research results indicate that for the same molecular cluster configuration, the scanning tunneling microscope picocavity has a more significant superradiance intensity, while the scanning tunneling microscope nanocavity has a longer duration of superradiance. From the perspective of symmetry, one-dimensional chain molecular clusters only have axial symmetry, while two-dimensional planar and cyclic molecular clusters have both axial symmetry and central symmetry. Cyclic molecular clusters also have multiple rotational symmetries, so in the same scanning tunneling microscope cavity, the higher the arrangement symmetry of molecular clusters, the easier it is to generate obvious superradiance pulses. In addition, the scanning tunneling microscope picocavity is more sensitive to changes in external conditions such as excitation wavelength due to its higher spatial resolution and stronger local field enhancement effect. These results indicate that by designing the cavity structure and geometric configuration of molecular clusters reasonably, the occurrence and enhancement of superradiance phenomena can be effectively controlled, and the time scale of superradiance pulses can be extended to the picosecond level, providing new ideas and methods for future practical applications in the fields of optics and nanotechnology.
  • 图 1  (a) 针尖尖端半径为42.5 nm, 高度为93.5 nm的银针尖与银衬底形成的STM纳米腔; (b) 针尖尖端半径为1 nm, 高度为112.5 nm的银针尖与银衬底形成的STM皮米腔; 其中腔中的蓝色区域表示不同构形的亚甲基蓝分子团簇

    Figure 1.  (a) An STM nanocavity formed by a silver needle tip with a radius of 42.5 nm and a height of 93.5 nm with a silver substrate; (b) An STM picocavity formed by a silver needle tip with a radius of 1 nm and a height of 112.5 nm with a silver substrate; The blue areas in the cavity are clusters of methylene blue molecules of different configurations.

    图 2  (a) 9个全同亚甲基蓝分子组成的半径为2 nm的环状分子团簇; (b) 连续激光激发下STM纳米腔中的远场辐射谱; (c) 连续激光激发下STM皮米腔中的远场辐射谱

    Figure 2.  (a) A circular molecular cluster with a radius of 2 nm composed of 9 identical methylene blue molecules; (b) Far-field radiation spectra in STM nanocavity by continuous laser excitation; (c) Far-field radiation spectra in STM picocavity by continuous laser excitation.

    图 3  (a) 连续激光激发下Dicke态量子数平均值表示的STM纳米腔中的分子动力学; (b) 不同激发时长时, STM纳米腔中用Dicke态量子数的平均值表示的分子动力学; (c) 不同激发时长时, STM皮米腔中用Dicke态量子数的平均值表示的分子动力学; 其中蓝色虚线表示Dicke态边界

    Figure 3.  (a) Molecular dynamics in STM nanocavity represented by the mean value of quantum numbers in Dicke states by continuous laser excitation; (b) Molecular dynamics in STM nanocavity expressed by the average of the quantum numbers of the Dicke states at different excitation durations; (c) Molecular dynamics in the STM picocavity expressed by the average of the quantum numbers of the Dicke states at different excitation durations; where the blue dotted line represents the Dicke state boundary.

    图 4  (a) 持续时间为28 fs的激光脉冲激励下, STM纳米腔中远场辐射谱; (b) 持续时间为13 fs的激光脉冲激励下, STM皮米腔中远场辐射谱; 插图分别对应STM纳米腔和皮米腔中用集体自旋矢量表示的分子动力学, 其中灰色线表示最外层球面

    Figure 4.  (a) Far-field radiation spectra in STM nanocavity by laser pulse excitation with a duration of 28 fs; (b) Far-field radiation spectra in STM picocavity by laser pulse excitation with a duration of 13 fs; The insets correspond to molecular dynamics represented by collective spin vectors in STM nanocavity and picocavity, respectively, where the gray line represents the outermost sphere.

    图 5  (a) 9个全同亚甲基蓝分子组成的二维平面构形分子团簇; (b) 持续时间为28 fs的激光脉冲激励下, STM纳米腔中远场辐射谱; (c) 持续时间为11 fs的激光脉冲激励下, STM皮米腔中远场辐射谱

    Figure 5.  (a) A two-dimensional planar configuration molecular cluster composed of 9 identical methylene blue molecules; (b) Far-field radiation spectra in STM nanocavity by laser pulse excitation with a duration of 28 fs; (c) Far-field radiation spectra in STM picocavity by laser pulse excitation with a duration of 11 fs.

    图 6  (a) 9个全同亚甲基蓝分子组成的一维链状分子团簇; (b) 持续时间为33 fs的激光脉冲激励下, STM纳米腔中远场辐射谱; (c) 持续时间为9 fs的激光脉冲激励下, STM皮米腔中远场辐射谱

    Figure 6.  (a) A one-dimensional chain of molecular clusters composed of 9 identical methylene blue molecules; (b) Far-field radiation spectra in STM nanocavity by laser pulse excitation with a duration of 33 fs; (c) Far-field radiation spectra in STM picocavity by laser pulse excitation with a duration of 9 fs.

    图 7  波长620 nm到700 nm, 强度为$ I_{\text{ext}} = 10^{3} $ μW/μ$ \text m^{2} $激光激发下 (a) STM纳米腔中环状分子团簇的远场辐射谱; (b) STM皮米腔中环状分子团簇的远场辐射谱

    Figure 7.  By laser excitation with wavelengths from 620 nm to 700 nm and an intensity of $ I_{\text{ext}} = 10^{3} $ μW/μ$ \text m^{2} $ (a) Far-field radiation spectra of clusters of cyclic molecules in STM nanocavity; (b) Far-field radiation spectra of clusters of cyclic molecules in STM picocavity.

    Baidu
  • [1]

    Binnig G, Rohrer H, Gerber Ch, Weibel E 1982 Appl. Phys. Lett. 40 178Google Scholar

    [2]

    Binnig G, Rohrer H, Gerber Ch, Weibel E 1982 Phys. Rev. Lett. 49 57Google Scholar

    [3]

    Gimzewski J K, Joachim C 1999 Science 283 1683Google Scholar

    [4]

    Wu S W, Ogawa N, Nazin G V, Ho W 2008 J. Phys. Chem. C 112 5241Google Scholar

    [5]

    Chen C, Chu P, Bobisch C A, Mills D L, Ho W 2010 Phys. Rev. Lett. 105 217402Google Scholar

    [6]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623Google Scholar

    [7]

    Schwarz F, Wang Y F, Hofer W A, Berndt R, Runge E, Kr$\ddot{o}$ger J 2015 J. Phys. Chem. C 119 15716Google Scholar

    [8]

    Stroscio J A, Eigler D M 1991 Science 254 1319Google Scholar

    [9]

    Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, De Nijs B, Esteban R, Aizpurua J, Baumberg J J 2016 Science 354 726Google Scholar

    [10]

    Shin H H, Yeon G J, Choi H K, Park S M, Lee K S, Kim Z H 2018 Nano. Lett. 18 262Google Scholar

    [11]

    Lee J, Tallarida N, Chen X, Liu P, Jensen L, Apkarian V A 2017 ACS Nano. 11 11466Google Scholar

    [12]

    Tallarida N, Lee J, Apkarian V A 2017 ACS Nano. 11 11393Google Scholar

    [13]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [14]

    Luo Y, Chen G, Zhang Y, Zhang L, Yu Y J, Kong F F, Tian X J, Zhang Y, Shan C X, Luo Y, Yang J L, Sandoghdar V, Dong Z C, Hou J G 2019 Phys. Rev. Lett. 122 233901Google Scholar

    [15]

    Chikkaraddy R, De Nijs B, Benz F, Barrow S J, Scherman O A, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg J J 2016 Nature 535 127Google Scholar

    [16]

    Bergmann K, O'Konski C T 1963 J. Phys. Chem. 67 2169Google Scholar

    [17]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [18]

    Yang B, Chen G, Ghafoor A, Zhang Y F, Zhang Y, Zhang Y, Luo Y, Yang J L, Sandoghdar V, Aizpurua J, Dong Z C, Hou J G 2020 Nat. Photonics 14 693Google Scholar

    [19]

    Jaculbia R B, Imada H, Miwa K, Iwasa T, Takenaka M, Yang B, Kazuma E, Hayazawa N, Taketsugu T, Kim Y 2020 Nat. Nanotechnol. 15 105Google Scholar

    [20]

    Scheel S, Buhmann S Y 2008 Acta Phys. Slovaca 58 675

    [21]

    Rivera N, Kaminer I 2020 Nat. Rev. Phys. 2 538Google Scholar

    [22]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press

    [23]

    Steck D A http://steck.us/teaching[2020-9-24]

    [24]

    Plankensteiner D, Hotter C, Ritsch H 2022 Quantum 6 617Google Scholar

    [25]

    Asenjo-Garcia A, Moreno-Cardoner M, Albrecht A, Kimble H J, Chang D E 2017 Phys. Rev. X 7 031024

    [26]

    Gross M, Haroche S 1982 Phys. Rep. 93 301Google Scholar

    [27]

    Kasha M 1963 Radiat. Res. 20 55Google Scholar

    [28]

    Spano F C, Silva C 2014 Annu. Rev. Phys. Chem. 65 477Google Scholar

  • [1] Zhang Jie, Chen Ai-Xi, Peng Ze-An. Spatially oriented correlated emission based on selective drive of diatomic superradiance states. Acta Physica Sinica, doi: 10.7498/aps.73.20240521
    [2] Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping. Mobility edges and reentrant localization induced by superradiance. Acta Physica Sinica, doi: 10.7498/aps.71.20212246
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, doi: 10.7498/aps.70.20212290
    [4] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, doi: 10.7498/aps.71.20212290
    [5] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, doi: 10.7498/aps.69.20200456
    [6] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, doi: 10.7498/aps.69.20200369
    [7] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, doi: 10.7498/aps.69.20191225
    [8] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, doi: 10.7498/aps.68.20190062
    [9] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, doi: 10.7498/aps.68.20190747
    [10] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, doi: 10.7498/aps.68.20190337
    [11] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, doi: 10.7498/aps.68.20190345
    [12] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, doi: 10.7498/aps.68.20190564
    [13] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, doi: 10.7498/aps.68.20190802
    [14] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, doi: 10.7498/aps.68.20190728
    [15] Feng Yan-Lin, Fan Jing-Tao, Chen Gang, Jia Suo-Tang. Magnetic properties of one-dimensional Fermi gases in an optical cavity. Acta Physica Sinica, doi: 10.7498/aps.68.20181954
    [16] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, doi: 10.7498/aps.67.20182085
    [17] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, doi: 10.7498/aps.66.148701
    [18] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, doi: 10.7498/aps.64.108402
    [19] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhu Xiang-Qin, Zhang Dian-Hui, Qiao Hai-Liang. Numerical simulation of generation and radiation of super-radiation from relativistic backward wave oscillators. Acta Physica Sinica, doi: 10.7498/aps.63.038402
    [20] Han Qing-Yao, Tang Jun-Chao, Zhang Chao, Wang Chuan, Ma Hai-Qiang, Yu Li, Jiao Rong-Zhen. The effects of local density of states on surface plasmon polaritons. Acta Physica Sinica, doi: 10.7498/aps.61.135202
Metrics
  • Abstract views:  254
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  17 February 2025

/

返回文章
返回
Baidu
map