-
The effects of carbon traps in Fe-C alloys on matrix defects and the evolutions of matrix defects in Fe-C alloys under irradiation are investigated in this paper. The object kinetic Monte Carlo (OKMC) modeling is used to establish a bridge between the micro-computational simulation data and the macro-experimental data. The simulation results verify the evolution of the carbon (C)-vacancy (Vac) complex under ideal conditions, and at relatively low temperatures, the complex is mainly C-Vac2. Under the assumption of complex traps, the evolution of matrix defects in Fe-C systems under irradiation is simulated in this work. It is verified that the carbon vacancy complex has an obvious trapping effect on matrix defects, and the simulation results of evolution simulation of matrix defects in the Fe-C system under irradiation are consistent with the experimental results. Furthermore, the effective approximate parameters used in the simulation are compared and discussed. The present research can provide a basic support for the research on the evolution of iron-based alloy irradiation defects.
-
Keywords:
- OKMC /
- evolution of irradiation defects /
- matrix defects /
- iron-base steel
[1] Smallman R E, Westmacott K H 1959 J. Appl. Phys. 30 603
Google Scholar
[2] Slugeň V, Kryukov A 2013 Nucl. Eng. Des. 263 308
[3] Muroga T, Sekimura N 1998 Fusion Eng. Des. 41 39
Google Scholar
[4] Styman P D, Hyde J M, Wilford K, et al. 2015 Ultramicroscopy 159 292
Google Scholar
[5] Lin X, Peng Q, Han E H, et al. 2018 Scr. Mater. 149 11
Google Scholar
[6] George H, Vineyard 1957 J. Phys. Chem. Solids 3 121
Google Scholar
[7] Martin-Bragado I, Rivera A, Valles G, et al. 2013 Comput. Phys. Commun. 184 2703
Google Scholar
[8] Jansson V, Chiapetto M, Malerba L 2013 J. Nucl. Mater. 442 341
Google Scholar
[9] Becquart C S, Domain C 2003 Nucl. Instrum. Methods Phys. Res. 202 44
Google Scholar
[10] Fu C C, Torre J, Willaime F, et al. 2005 Nat. Mater. 4 68
Google Scholar
[11] Malerba L, Marinica M C, Anento N, et al. 2010 J. Nucl. Mater. 406 19
Google Scholar
[12] Mendelev M I, Han S, Srolovitz D, et al. 2003 Philos. Mag. 83 3977
Google Scholar
[13] Pascuet M I, Castin N, Becquart C S, et al. 2011 J. Nucl. Mater. 42 106
Google Scholar
[14] Nichols F A 1969 J. Nucl. Mater. 30 143
Google Scholar
[15] Domain C, Becquart C S, Malerba L 2004 J. Nucl. Mater. 335 121
Google Scholar
[16] Castin N, Pascuet MI, Malerba L 2012 J. Nucl. Mater. 429 315
Google Scholar
[17] Anento N, Serra A, Osetsky, et al. 2010 Modell Simul. Mater. Sci. Eng. 18 025008
Google Scholar
[18] Terentyev D, Klaver T, Olsson P, et al. 2008 Phys. Rev. Lett. 100 145503
Google Scholar
[19] Takaki S, Fuss J, Kuglers H, et al. 1983 Radiat. Eff. Defects Solids 79 87
Google Scholar
[20] Arakawa K, Ono K, Isshiki M, et al. 2007 Science 318 956
Google Scholar
[21] Barashev A, Golubov S H 2001 Philos. Mag. 81 2515
Google Scholar
[22] Wirth B D, Odette G R, Maroudas D, et al. 2000 J. Nucl. Mater. 276 33
Google Scholar
[23] Domain C, Becquart C S, Malerba L 2004 Journal of Nucl. Mater. 335 121
[24] Forst J C, Slycke J, Vliet K J V, et al. 2006 Phys. Rev. Lett. 96 175501
Google Scholar
[25] Anento N, Serra A 2013 J. Nucl. Mater. 440 236
Google Scholar
[26] Hepburn D, Ackland G 2008 Phys. Rev. B 78 165115
Google Scholar
[27] Zinkle S J, Singh B N 2006 J. Nucl. Mater. 351 269
Google Scholar
-
-
[1] Smallman R E, Westmacott K H 1959 J. Appl. Phys. 30 603
Google Scholar
[2] Slugeň V, Kryukov A 2013 Nucl. Eng. Des. 263 308
[3] Muroga T, Sekimura N 1998 Fusion Eng. Des. 41 39
Google Scholar
[4] Styman P D, Hyde J M, Wilford K, et al. 2015 Ultramicroscopy 159 292
Google Scholar
[5] Lin X, Peng Q, Han E H, et al. 2018 Scr. Mater. 149 11
Google Scholar
[6] George H, Vineyard 1957 J. Phys. Chem. Solids 3 121
Google Scholar
[7] Martin-Bragado I, Rivera A, Valles G, et al. 2013 Comput. Phys. Commun. 184 2703
Google Scholar
[8] Jansson V, Chiapetto M, Malerba L 2013 J. Nucl. Mater. 442 341
Google Scholar
[9] Becquart C S, Domain C 2003 Nucl. Instrum. Methods Phys. Res. 202 44
Google Scholar
[10] Fu C C, Torre J, Willaime F, et al. 2005 Nat. Mater. 4 68
Google Scholar
[11] Malerba L, Marinica M C, Anento N, et al. 2010 J. Nucl. Mater. 406 19
Google Scholar
[12] Mendelev M I, Han S, Srolovitz D, et al. 2003 Philos. Mag. 83 3977
Google Scholar
[13] Pascuet M I, Castin N, Becquart C S, et al. 2011 J. Nucl. Mater. 42 106
Google Scholar
[14] Nichols F A 1969 J. Nucl. Mater. 30 143
Google Scholar
[15] Domain C, Becquart C S, Malerba L 2004 J. Nucl. Mater. 335 121
Google Scholar
[16] Castin N, Pascuet MI, Malerba L 2012 J. Nucl. Mater. 429 315
Google Scholar
[17] Anento N, Serra A, Osetsky, et al. 2010 Modell Simul. Mater. Sci. Eng. 18 025008
Google Scholar
[18] Terentyev D, Klaver T, Olsson P, et al. 2008 Phys. Rev. Lett. 100 145503
Google Scholar
[19] Takaki S, Fuss J, Kuglers H, et al. 1983 Radiat. Eff. Defects Solids 79 87
Google Scholar
[20] Arakawa K, Ono K, Isshiki M, et al. 2007 Science 318 956
Google Scholar
[21] Barashev A, Golubov S H 2001 Philos. Mag. 81 2515
Google Scholar
[22] Wirth B D, Odette G R, Maroudas D, et al. 2000 J. Nucl. Mater. 276 33
Google Scholar
[23] Domain C, Becquart C S, Malerba L 2004 Journal of Nucl. Mater. 335 121
[24] Forst J C, Slycke J, Vliet K J V, et al. 2006 Phys. Rev. Lett. 96 175501
Google Scholar
[25] Anento N, Serra A 2013 J. Nucl. Mater. 440 236
Google Scholar
[26] Hepburn D, Ackland G 2008 Phys. Rev. B 78 165115
Google Scholar
[27] Zinkle S J, Singh B N 2006 J. Nucl. Mater. 351 269
Google Scholar
Catalog
Metrics
- Abstract views: 4422
- PDF Downloads: 76
- Cited By: 0