Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current

Cheng Xue-Ming Cui Wen-Yu Zhu Lu-Ping Wang Xia Liu Zong-Ming Cao Bing-Qiang

Citation:

Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current

Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang
cstr: 32037.14.aps.73.20241075
PDF
HTML
Get Citation
  • Halide perovskites exhibit excellent electrical and optical properties and are ideal candidates for active layers in optoelectronic devices, especially in the field of high-performance photodetection, where they demonstrate a competitive advantage in terms of development prospects. Among them, the all-inorganic perovskite CsPbBr3 has received widespread attention due to its better environmental stability. It is demonstrated in this work that a vertical MSM-type CsPbBr3 thin-film photodetector has characteristics of fast response time and ultra-low dark current. The use of a vertical structure can reduce the transit distance of photo carriers, enabling the device to achieve a fast response time of 63 μs, which is two orders of magnitude higher than the traditional planar MSM-type photodetectors with a response time of 10 ms. Then, by spinning a charge transport layer between the p-type CsPbBr3 and Ag electrodes, effective separation of photocarriers at the interface is realized and physical passivation between the perovskite and metal electrodes is also achieved. Due to the superior surface quality of the spun TiO2 film compared with the NiOx film, and through Sentaurus TCAD simulations and bandgap analyses, with TiO2 serving as the electron transport layer, it effectively inhibits the transmission of excess holes in p-type CsPbBr3. Consequently, the electron transport layer TiO2 is more effective in reducing dark current than the hole transport layer NiOx, with a dark current magnitude of only –4.81×10–12 A at a –1 V bias. Furthermore, this vertical MSM-type CsPbBr3 thin-film photodetector also has a large linear dynamic range (122 dB), high detectivity (1.16×1012 Jones), and good photo-stability. Through Sentaurus TCAD simulation, it is found that the charge transport layer selectively blocks carrier transmission, thereby reducing dark current. The simulation results are in good agreement with experimental data, providing theoretical guidance for a more in-depth understanding of the intrinsic physical mechanisms.
      Corresponding author: Cao Bing-Qiang, mse_caobq@ujn.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2022YFC3700801), the Jinan Education Bureau, China (Grant No. JNSX2023015), and the Jinan Science and Technology Bureau, China (Grant No. 202333042).
    [1]

    Xu J, Li J, Wang H S, He C Y, Li J L, Bao Y N, Tang H Y, Luo H D, Liu X C, Yang Y M 2021 Adv. Mater. Interfaces 9 2101487Google Scholar

    [2]

    Zhang Y, Wu C Y, Zhou X Y, Li J C, Tao X Y, Liu B Y, Chen J W, Chang Y J, Tong G Q, Jiang Y 2023 Mater. Today Phys. 36 101179Google Scholar

    [3]

    Liu X Y, Liu Z Y, Li J J, Tan X H, Sun B, Fang H, Xi S, Shi T L, Tang Z R, Liao G L 2020 J. Mater. Chem. C 8 3337Google Scholar

    [4]

    Perumalveeramalai C, Zheng J, Wang Y, Guo H L, Pammi S. V. N., Mudike R, Li C B 2024 Chem. Eng. J. 492 152213Google Scholar

    [5]

    Wang Y Z, Kublitski J, Xing S, Dollinger F, Spoltore D, Benduhn J, Leo K 2022 Mater. Horiz. 9 220Google Scholar

    [6]

    Zheng J B, Yang D Z, Guo D C, Yang L Q, Li Ji, Ma D G 2023 ACS Photonics 10 1382Google Scholar

    [7]

    Wang H D, Huang H X, Zha J J, et al. 2023 Adv. Opt. Mater. 11 2301508Google Scholar

    [8]

    Gong W Q, Tian Y Z, Yan J, Gao F, Li L 2022 J. Mater. Chem. C 10 7460Google Scholar

    [9]

    Qiao S, Liu J H, Wang R N, Guo L J, Wang S F, Pan A L, Pan C F 2023 Adv. Opt. Mater. 11 2300751Google Scholar

    [10]

    Li X, Xiang Y, Wan J X, Xiao Z X, Yuan H, Sun J, Liu Y F, Dai G Z, Yang J L 2022 Org. Electron. 101 106409Google Scholar

    [11]

    Zhu L P, Cheng X M, Wang A W, Shan Y S, Cao X L, Cao B Q 2023 Appl. Phys. Lett. 123 212105Google Scholar

    [12]

    Hu T G, Zhao L X, Wang Y J, Lin H L, Xie S H, Hu Y, Liu C, Zhu W K, Wei Z M, Liu J, Wang K Y 2023 ACS Nano 17 8411Google Scholar

    [13]

    Zhao Z E, Tang W B, Zhang S H, Ding Y C, Zhao X F, Yuan G L 2023 J. Phys. Chem. C 127 4846Google Scholar

    [14]

    王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强 2024 73 058503Google Scholar

    Wang A W, Zhu L P, Shan Y S, Liu P, Cao X L, Cao B Q 2024 Acta Phys. Sin. 73 058503Google Scholar

    [15]

    Yan T T, Liu X Y, Zhang X Y, Hong E L, Wu L M, Fang X S 2023 Adv. Funct. Mater. 34 2311042Google Scholar

    [16]

    Saleem M I, Sulaman M, Batool A, Bukhtiar A, Khalid S 2023 Energy Technol. 11 2300013Google Scholar

    [17]

    Yuan B L, Wei H M, Li J W, Zhou Y, Xu F, Li J K, Cao B Q 2021 ACS Appl. Electron. Mater. 3 5592Google Scholar

    [18]

    Ahirwar P, Kumar R 2023 Chem. Phys. Lett. 810 140180Google Scholar

    [19]

    Bai T X Y, Wang S W., Bai L Y, Zhang K X., Chu C Y., Yi L X. 2022 Nanoscale Res. Lett. 17 69Google Scholar

    [20]

    Yun K R, Lee T J, Kim S K, Kim J H, Seong T Y 2022 Adv. Opt. Mater. 11 2201974Google Scholar

    [21]

    Mukhokosi E P, Maaza M 2022 J. Mater. Sci. 57 1555Google Scholar

    [22]

    Sathyanarayana S, Krishnan K N, Das B C. 2024 Phys. Rev. Appl. 21 044015Google Scholar

    [23]

    Cai J, Zhao T, Chen M M, Su J Y, Shen X M, Liu Y, Cao D W 2022 J. Phys. Chem. C 126 10007Google Scholar

    [24]

    Zhou H P, Chen M W, Liu C G, Zhang R, Li J, Liao S A, Lu H F, Yang Y P 2023 Discover Nano 18 11Google Scholar

    [25]

    Bhardwaj B, Bothra U, Singh S, Mills S, Ronningen T. J., Krishna S, Kabra D 2023 Appl. Phys. Rev. 10 021419Google Scholar

    [26]

    Liu T, Li C, Yuan B L, Chen Y, Wei H M, Cao B Q 2022 Appl. Phys. Lett. 121 012102Google Scholar

    [27]

    Alnuaimi A, Almansouri I, Nayfeh A 2016 J. Comput. Electron. 15 1110Google Scholar

    [28]

    Wang T, Xiao J G, Sun R, Luo L B, Yi M X 2022 Chin. Phys. B 31 018801Google Scholar

    [29]

    Luo X L, Hu Y, Lin Z H, Guo X, Zhang S Y, Shou C H, Hu Z S, Zhao X, Hao Y, Chang J J 2023 Solar RRL 7 2300081Google Scholar

    [30]

    Liu X Y, Li S Y, Li Z Q, Cao F, Su L, Shtansky D V, Fang X S 2022 ACS Appl. Mater. Interfaces 14 48936Google Scholar

    [31]

    胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞 2022 71 116801Google Scholar

    Hu Z T, Shu X, Wang X, Li Y, Xu R, Hong F, Ma Z Q, Jiang Z M, Xu F 2022 Acta Phys. Sin. 71 116801Google Scholar

    [32]

    Li G X, Wang Y K, Huang L X, Sun W H 2022 J. Alloys Compd. 907 164432Google Scholar

    [33]

    Wang S L, Li M Y, Song C Y, Zheng C L, Li J T, Li Z Y, Zhang Y T, Yao J Q 2023 Appl. Surf. Sci. 623 156983Google Scholar

    [34]

    Yuan Y, Ji Z, Yan G H, Li Z W, Li J L, Kuang M, Jiang B Q, Zeng L L, Pan L K, Mai W J 2021 J. Mater. Sci. Technol. 75 39Google Scholar

    [35]

    Wang H, Du Z T, Jiang X, Cao S, Zou B S, Zheng J J, Zhao J L 2024 ACS Appl. Mater. Interfaces 16 11694Google Scholar

    [36]

    Hua F, Du X, Huang Z Y, Gu Y T, Wen J F, Liu F C, Chen J X, Tang T 2023 J. Opt. Soc. Am. B: Opt. Phys. 41 55Google Scholar

    [37]

    Zhang T, Cai S Y, Liang N N, Gao Y L, Li Y P, Liu F C, Long L Z, Liu J 2023 Phys. Scr. 99 015526Google Scholar

    [38]

    Su L X, Li T F, Zhu Y 2022 Opt. Express 30 23330Google Scholar

    [39]

    Zhou H, Wang R, Zhang X H, Xiao B A, Shuang Z H, Wu D J, Qin P L 2023 IEEE Trans. Electron Devices 70 6435Google Scholar

  • 图 1  (a) 不同结构MSM型CsPbBr3薄膜光电探测器结构示意图; (b) 使用PLD制备的CsPbBr3薄膜的XRD扫描图; (c) CsPbBr3薄膜的紫外-可见吸收光谱图和荧光光谱图; (d) 平面MSM型CsPbBr3薄膜光电探测器响应速度图; (e) 垂直MSM型CsPbBr3薄膜光电探测器响应速度图; (f) 450 nm激光照射下, 垂直/平面MSM型CsPbBr3薄膜光电探测器的光暗电流图

    Figure 1.  (a) Schematic diagram of MSM-type CsPbBr3 thin film photodetectors with different structures; (b) XRD patterns of CsPbBr3 thin films prepared using PLD; (c) UV-visible absorption spectrum and fluorescence spectrum of CsPbBr3 thin film; (d) response time graph of planar MSM-type CsPbBr3 thin film photodetector; (e) response time graph of vertical MSM-type CsPbBr3 thin film photodetector; (f) photo-dark current graph of vertical/planar MSM-type CsPbBr3 thin film photodetector under 450 nm laser illumination.

    图 2  (a) CsPbBr3薄膜裸漏的表面扫描电子显微镜(SEM)图; (b)旋涂的NiOx薄膜表面SEM图; (c)旋涂的TiO2薄膜表面SEM图; (d)旋涂的TiO2薄膜断面SEM图; (e)如插图所示, –20 V偏压下, 与图(a), (b), 图(c)分别对应的器件电流-时间(I-T)曲线对比图

    Figure 2.  (a) Scanning Electron Microscope (SEM) image of the exposed surface of CsPbBr3 thin film; (b) SEM image of the surface of spin-coated NiOx thin film; (c) SEM image of the surface of spin-coated TiO2 thin film; (d) cross-sectional SEM image of the spin-coated TiO2 thin film; (e) as illustrated, comparison of the device current-time (I-T) curves under a –20 V bias corresponding to panels (a), (b), (c).

    图 3  (a) 不同界面缺陷态密度下垂直结构CsPbBr3薄膜光电探测器模拟暗电流曲线; (b) 加入一层NiOx薄膜后, CsPbBr3/NiOx薄膜器件总电流、电子电流和空穴电流的模拟I-V曲线图; (c) 加入一层TiO2薄膜后, CsPbBr3/TiO2薄膜器件总电流、电子电流和空穴电流的模拟I-V曲线图; (d)—(f) 与图(a), (b), (c)对应的光电探测器件内部电流分布图

    Figure 3.  (a) Simulated dark current curves of vertical structure CsPbBr3 thin film photodetectors under different interface defect state densities; (b) after adding a layer of NiOx, simulated I-V curves showing total current, electron current, and hole current for CsPbBr3/NiOx thin film devices; (c) after adding a layer of TiO2, simulated I-V curves showing total current, electron current, and hole current for CsPbBr3/TiO2 thin film devices; (d)–(f) diagrams showing the distribution of internal current in photodetector devices corresponding to figures (a), (b), (c).

    图 4  (a) CsPbBr3薄膜的紫外光电子能谱图; (b) CsPbBr3/NiOx薄膜光电探测器的能带图; (c) CsPbBr3/TiO2薄膜光电探测器的能带图; (d) 450 nm光照, 在黑暗和不同光照强度下垂直MSM型CsPbBr3薄膜光电探测器的I-V曲线图; (e) 450 nm光照, 在不同偏置电压下垂直MSM型CsPbBr3薄膜光电探测器的I-T曲线图; (f) 垂直MSM型CsPbBr3薄膜光电探测器的瞬态光响应曲线图

    Figure 4.  (a) Ultraviolet photoelectron spectroscopy of CsPbBr3 thin films; (b) band diagram of CsPbBr3/NiOx thin film photodetectors; (c) band diagram of CsPbBr3/TiO2 thin film photodetectors; (d) I-V characteristics of vertical MSM-type CsPbBr3 thin film photodetectors under 450 nm illumination, in darkness and at various light intensities; (e) I-T curves of vertical MSM-type CsPbBr3 thin film photodetectors under 450 nm illumination at different bias voltages; (f) transient photocurrent response curves of vertical MSM-type CsPbBr3 thin film photodetectors.

    图 5  (a) 450 nm光照和–20 V偏置, 不同光照强度下垂直MSM型CsPbBr3薄膜光电探测器的光电流的绝对值大小; (b) 不同光照强度下的开关比; (c) 不同光照强度下的响应度; (d) 不同光照强度下的探测率

    Figure 5.  (a) The absolute magnitude of the photocurrent in vertical MSM-type CsPbBr3 thin film photodetectors under 450 nm illumination and a -20 V bias at different light intensities; (b) on/off ratio at different light intensities; (c) responsivity at different light intensities; (d) detectivity at different light intensities.

    表 1  CsPbBr3基薄膜光电探测器的性能对比

    Table 1.  Performance comparison of CsPbBr3-based thin film photodetectors.

    Detector Structure Dark current/(10–10 A) D*/(109 Jones) τrise/τfall/(ms/ms) Ref.
    CsPbBr3 NPLs/Ag Planar –0.37(–3 V) 9300 75/72 [35]
    n-Si/CsPbBr3/Au Planar 0.003(0 V) 105 190/291 [36]
    1D-TiO2/0D-CsPbBr3/Au Planar 4(1 V) 1800 9348/5951 [37]
    CsPbBr3/ZnO Vertical –5(–5 V) 7 0.061/1.4 [38]
    SnO2/CsPbBr3/Carbon Vertical 330(0 V) 370 0.11/0.23 [39]
    CsPbBr3/TiO2/Ag Vertical –0.0481(–1 V) 1160 0.063/0.162 This work
    DownLoad: CSV
    Baidu
  • [1]

    Xu J, Li J, Wang H S, He C Y, Li J L, Bao Y N, Tang H Y, Luo H D, Liu X C, Yang Y M 2021 Adv. Mater. Interfaces 9 2101487Google Scholar

    [2]

    Zhang Y, Wu C Y, Zhou X Y, Li J C, Tao X Y, Liu B Y, Chen J W, Chang Y J, Tong G Q, Jiang Y 2023 Mater. Today Phys. 36 101179Google Scholar

    [3]

    Liu X Y, Liu Z Y, Li J J, Tan X H, Sun B, Fang H, Xi S, Shi T L, Tang Z R, Liao G L 2020 J. Mater. Chem. C 8 3337Google Scholar

    [4]

    Perumalveeramalai C, Zheng J, Wang Y, Guo H L, Pammi S. V. N., Mudike R, Li C B 2024 Chem. Eng. J. 492 152213Google Scholar

    [5]

    Wang Y Z, Kublitski J, Xing S, Dollinger F, Spoltore D, Benduhn J, Leo K 2022 Mater. Horiz. 9 220Google Scholar

    [6]

    Zheng J B, Yang D Z, Guo D C, Yang L Q, Li Ji, Ma D G 2023 ACS Photonics 10 1382Google Scholar

    [7]

    Wang H D, Huang H X, Zha J J, et al. 2023 Adv. Opt. Mater. 11 2301508Google Scholar

    [8]

    Gong W Q, Tian Y Z, Yan J, Gao F, Li L 2022 J. Mater. Chem. C 10 7460Google Scholar

    [9]

    Qiao S, Liu J H, Wang R N, Guo L J, Wang S F, Pan A L, Pan C F 2023 Adv. Opt. Mater. 11 2300751Google Scholar

    [10]

    Li X, Xiang Y, Wan J X, Xiao Z X, Yuan H, Sun J, Liu Y F, Dai G Z, Yang J L 2022 Org. Electron. 101 106409Google Scholar

    [11]

    Zhu L P, Cheng X M, Wang A W, Shan Y S, Cao X L, Cao B Q 2023 Appl. Phys. Lett. 123 212105Google Scholar

    [12]

    Hu T G, Zhao L X, Wang Y J, Lin H L, Xie S H, Hu Y, Liu C, Zhu W K, Wei Z M, Liu J, Wang K Y 2023 ACS Nano 17 8411Google Scholar

    [13]

    Zhao Z E, Tang W B, Zhang S H, Ding Y C, Zhao X F, Yuan G L 2023 J. Phys. Chem. C 127 4846Google Scholar

    [14]

    王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强 2024 73 058503Google Scholar

    Wang A W, Zhu L P, Shan Y S, Liu P, Cao X L, Cao B Q 2024 Acta Phys. Sin. 73 058503Google Scholar

    [15]

    Yan T T, Liu X Y, Zhang X Y, Hong E L, Wu L M, Fang X S 2023 Adv. Funct. Mater. 34 2311042Google Scholar

    [16]

    Saleem M I, Sulaman M, Batool A, Bukhtiar A, Khalid S 2023 Energy Technol. 11 2300013Google Scholar

    [17]

    Yuan B L, Wei H M, Li J W, Zhou Y, Xu F, Li J K, Cao B Q 2021 ACS Appl. Electron. Mater. 3 5592Google Scholar

    [18]

    Ahirwar P, Kumar R 2023 Chem. Phys. Lett. 810 140180Google Scholar

    [19]

    Bai T X Y, Wang S W., Bai L Y, Zhang K X., Chu C Y., Yi L X. 2022 Nanoscale Res. Lett. 17 69Google Scholar

    [20]

    Yun K R, Lee T J, Kim S K, Kim J H, Seong T Y 2022 Adv. Opt. Mater. 11 2201974Google Scholar

    [21]

    Mukhokosi E P, Maaza M 2022 J. Mater. Sci. 57 1555Google Scholar

    [22]

    Sathyanarayana S, Krishnan K N, Das B C. 2024 Phys. Rev. Appl. 21 044015Google Scholar

    [23]

    Cai J, Zhao T, Chen M M, Su J Y, Shen X M, Liu Y, Cao D W 2022 J. Phys. Chem. C 126 10007Google Scholar

    [24]

    Zhou H P, Chen M W, Liu C G, Zhang R, Li J, Liao S A, Lu H F, Yang Y P 2023 Discover Nano 18 11Google Scholar

    [25]

    Bhardwaj B, Bothra U, Singh S, Mills S, Ronningen T. J., Krishna S, Kabra D 2023 Appl. Phys. Rev. 10 021419Google Scholar

    [26]

    Liu T, Li C, Yuan B L, Chen Y, Wei H M, Cao B Q 2022 Appl. Phys. Lett. 121 012102Google Scholar

    [27]

    Alnuaimi A, Almansouri I, Nayfeh A 2016 J. Comput. Electron. 15 1110Google Scholar

    [28]

    Wang T, Xiao J G, Sun R, Luo L B, Yi M X 2022 Chin. Phys. B 31 018801Google Scholar

    [29]

    Luo X L, Hu Y, Lin Z H, Guo X, Zhang S Y, Shou C H, Hu Z S, Zhao X, Hao Y, Chang J J 2023 Solar RRL 7 2300081Google Scholar

    [30]

    Liu X Y, Li S Y, Li Z Q, Cao F, Su L, Shtansky D V, Fang X S 2022 ACS Appl. Mater. Interfaces 14 48936Google Scholar

    [31]

    胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞 2022 71 116801Google Scholar

    Hu Z T, Shu X, Wang X, Li Y, Xu R, Hong F, Ma Z Q, Jiang Z M, Xu F 2022 Acta Phys. Sin. 71 116801Google Scholar

    [32]

    Li G X, Wang Y K, Huang L X, Sun W H 2022 J. Alloys Compd. 907 164432Google Scholar

    [33]

    Wang S L, Li M Y, Song C Y, Zheng C L, Li J T, Li Z Y, Zhang Y T, Yao J Q 2023 Appl. Surf. Sci. 623 156983Google Scholar

    [34]

    Yuan Y, Ji Z, Yan G H, Li Z W, Li J L, Kuang M, Jiang B Q, Zeng L L, Pan L K, Mai W J 2021 J. Mater. Sci. Technol. 75 39Google Scholar

    [35]

    Wang H, Du Z T, Jiang X, Cao S, Zou B S, Zheng J J, Zhao J L 2024 ACS Appl. Mater. Interfaces 16 11694Google Scholar

    [36]

    Hua F, Du X, Huang Z Y, Gu Y T, Wen J F, Liu F C, Chen J X, Tang T 2023 J. Opt. Soc. Am. B: Opt. Phys. 41 55Google Scholar

    [37]

    Zhang T, Cai S Y, Liang N N, Gao Y L, Li Y P, Liu F C, Long L Z, Liu J 2023 Phys. Scr. 99 015526Google Scholar

    [38]

    Su L X, Li T F, Zhu Y 2022 Opt. Express 30 23330Google Scholar

    [39]

    Zhou H, Wang R, Zhang X H, Xiao B A, Shuang Z H, Wu D J, Qin P L 2023 IEEE Trans. Electron Devices 70 6435Google Scholar

  • [1] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] Wang Fei, Yang Zhen-Qing, Xia Yu-Hong, Liu Chang, Lin Chun-Dan. Nonadiabatic molecular dynamics study on effect of Ge/Sn alloy on hot carrier relaxation of CsPbBr3 perovskite. Acta Physica Sinica, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [5] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [6] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [7] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [8] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [9] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [10] Zhong Ting-Ting, Zhang Chen, Shindume Lomboleni Hamukwaya, Xu Wang-Shu, Tang Kun-Peng, Xu Xiang, Sun Wen-Tian, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Efficient and stable carbon-based CsPbBr3 solar cells added with PEABr additive. Acta Physica Sinica, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [11] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [12] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [13] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [14] Lu Zi-Qing, Han Qin, Ye Han, Wang Shuai, Xiao Feng, Xiao Fan. Low dark current and high bandwidth evanescent wave coupled PIN photodetector array for 400 Gbit/s receiving system. Acta Physica Sinica, 2021, 70(20): 208501. doi: 10.7498/aps.70.20210781
    [15] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [16] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [17] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [18] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [19] Guo Jian-Chuan, Zuo Yu-Hua, Zhang Yun, Zhang Ling-Zi, Cheng Bu-Wen, Wang Qi-Ming. Theoretical analysis and experimental study of the space-charge-screening effect in uni-traveling-carrier photodiode. Acta Physica Sinica, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [20] Xiong Chuan-Bing, Jiang Feng-Yi, Wang Li, Fang Wen-Qing, Mo Chun-Lan. The investigation on the interference phenomenon in electroluminescence spectrum of vertical structured InGaAlN multiple quantum well light-emitting diodes. Acta Physica Sinica, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
  • supplement 20-20241075Suppl.pdf supplement
Metrics
  • Abstract views:  1441
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  02 August 2024
  • Accepted Date:  26 August 2024
  • Available Online:  05 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回
Baidu
map