搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ge/Sn合金化对CsPbBr3钙钛矿热载流子弛豫影响的非绝热分子动力学研究

王斐 杨振清 夏雨虹 刘畅 林春丹

引用本文:
Citation:

Ge/Sn合金化对CsPbBr3钙钛矿热载流子弛豫影响的非绝热分子动力学研究

王斐, 杨振清, 夏雨虹, 刘畅, 林春丹

Nonadiabatic molecular dynamics study on effect of Ge/Sn alloy on hot carrier relaxation of CsPbBr3 perovskite

Wang Fei, Yang Zhen-Qing, Xia Yu-Hong, Liu Chang, Lin Chun-Dan
PDF
HTML
导出引用
  • 铯基全无机钙钛矿CsPbBr3具有良好的热稳定性, 在应用中表现出优越的发光特性, 是近年来光电领域的明星材料. CsPbBr3界面的光生载流子过程与其光电性能密切相关. 本文采用非绝热分子动力学方法结合含时密度泛函理论, 对CsPbBr3及其合金化结构的激发态动力学过程进行了系统研究. 研究结果表明, Sn/Ge合金化能够有效缩短退相干时间, 减缓电子-空穴复合. CsPb0.75Ge0.25Br3体系的载流子寿命延长至1.6倍, 而CsPb0.5Ge0.25Sn0.25Br3体系的载流子寿命延长为原始体系的4.2倍. 证明了B位(钙钛矿结构ABX3中的B位)金属阳离子的双原子合金化对CsPbBr3的非辐射电子-空穴复合具有很强的影响. 本研究提供了一种能够有效延长钙钛矿载流子寿命, 合理优化太阳能电池性能的合金化方案, 为未来钙钛矿太阳能电池材料的设计提供了思路.
    Perovskite solar cells have been a prominent focus in the field of photovoltaics in recent decades, owing to their exceptional performance: easy synthesis, and cost-effectiveness. The all-inorganic cesium-based perovskite CsPbBr3, known for its remarkable thermal stability, has become a star material in the field of optoelectronics due to its outstanding luminescent properties. Despite the high efficiency of lead-based perovskite solar cells, the toxicity associated with lead and the poor long-term stability of these devices remain significant barriers to their large-scale commercialization. As is well known, non-radiative electron-hole recombination significantly shortens the carrier lifetime, acting as a primary pathway for excited state charge to loss energy. This phenomenon directly affects the photovoltaic conversion efficiency and charge transfer performance of perovskite materials. Therefore, maximizing the reduction of non-radiative recombination energy loss in perovskite solar cells has become a crucial research focus. In this study, a systematic exploration is conducted by using a non-adiabatic molecular dynamics approach combined with time-dependent density functional theory to investigate the excited-state carrier dynamics of CsPbBr3 and its alloyed structures, CsPb0.75Ge0.25Br3 and CsPb0.5Ge0.25Sn0.25Br3. The study comprehensively analyzes the non-radiative electron-hole recombination scenarios and the mechanisms for reducing charge energy loss based on crystal structure, electronic properties, and excited-state properties. The research findings reveal that alloying with Sn/Ge can reduce the bandgap, increase non-adiabatic coupling, and shorten the decoherence time. The interplay of reduced quantum decoherence, smaller bandgap, and larger non-adiabatic coupling effectively decelerates the electron-hole recombination process. Consequently, the carrier lifetime of the CsPb0.75Ge0.25Br3 system extends by 1.6 times. Moreover, under the joint influence of Sn/Ge, the carrier lifetime of the CsPb0.5Ge0.25Sn0.25Br3 system extends by 4.2 times compared with those of the original system. The overall sequence follows CsPb0.5Ge0.25Sn0.25Br3 > CsPb0.75Ge0.25Br3 > CsPbBr3. This study underscores the significant influence of binary alloying of B-site metal cations (in the perovskite structure ABX3, where B-site refers to the metal cation) on the non-radiative electron-hole recombination of CsPbBr3.This research presents an effective alloying scheme that substantially prolongs the carrier lifetime of perovskites, offering a rational approach to optimizing solar cell performance. It lays the groundwork for the future design of perovskite solar cell materials.
      通信作者: 杨振清, yangzhq@cup.edu.cn ; 林春丹, linchundan@126.com
      Corresponding author: Yang Zhen-Qing, yangzhq@cup.edu.cn ; Lin Chun-Dan, linchundan@126.com
    [1]

    Cho C, Palatnik A, Sudzius M, Grodofzig R, Nehm F, Leo K 2020 ACS Appl. Mater. Interfaces 12 35242Google Scholar

    [2]

    Ito N, Kamarudin M A, Hirotani D, Zhang Y, Shen Q, Ogomi Y, Iikubo S, Minemoto T, Yoshino K, Hayase S 2018 J. Phys. Chem. Lett. 9 1682Google Scholar

    [3]

    Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [4]

    Quarti C, Marchal N, Beljonne D 2018 J. Phys. Chem. Lett. 9 3416Google Scholar

    [5]

    Shi R, Vasenko A S, Long R, Prezhdo O V 2020 J. Phys. Chem. Lett. 11 9100Google Scholar

    [6]

    Yu W, Li F, Yu L, Niazi M R, Zou Y, Corzo D, Basu A, Ma C, Dey S, Tietze M L, Buttner U, Wang X, Wang Z, Hedhili M N, Guo C, Wu T, Amassian A 2018 Nat. Commun. 9 5354Google Scholar

    [7]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [8]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [9]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog Photovolt 31 651Google Scholar

    [10]

    Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar

    [11]

    Liu Q, Wang Y, Sui N, Wang Y, Chi X, Wang Q, Chen Y, Ji W, Zou L, Zhang H 2016 Sci. Rep. 6 29442Google Scholar

    [12]

    Gerhard M, Louis B, Camacho R, Merdasa A, Li J, Kiligaridis A, Dobrovolsky A, Hofkens J, Scheblykin I G 2019 Nat. Commun. 10 1698Google Scholar

    [13]

    Kawai H, Giorgi G, Marini A, Yamashita K 2015 Nano Lett. 15 3103Google Scholar

    [14]

    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J-M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J 2018 ACS Nano 12 3477Google Scholar

    [15]

    Ray D, Clark C, Pham H Q, Borycz J, Holmes R J, Aydil E S, Gagliardi L 2018 J. Phys. Chem. C 122 7838Google Scholar

    [16]

    Ran C, Xiong W, Zhong H, Yuan S 2022 J. Phys. Chem. C 126 6448Google Scholar

    [17]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [18]

    Qian F, Hu M, Gong J, Ge C, Zhou Y, Guo J, Chen M, Ge Z, Padture N P, Zhou Y, Feng J 2020 J. Phys. Chem. C 124 11749Google Scholar

    [19]

    Liu M, Pasanen H, Ali‐Löytty H, Hiltunen A, Lahtonen K, Qudsia S, Smått J H, Valden M, Tkachenko N V, Vivo P 2020 Angew. Chem. Int. Ed. 59 22117Google Scholar

    [20]

    Li A, Liu Q, Chu W, Liang W, Prezhdo O V 2021 ACS Appl. Mater. Interfaces 13 16567Google Scholar

    [21]

    Stranks S D, Petrozza A 2016 Nat. Photonics 10 562Google Scholar

    [22]

    Dequilettes D W, Frohna K, Emin D, Kirchartz T, Bulovic V, Ginger D S, Stranks S D 2019 Chem. Rev. 119 11007Google Scholar

    [23]

    Kresse G, Furthmuller J, 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Blochl P , Blöchl E, Blöchl P. E. 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Wang L, Akimov A, Prezhdo O V 2016 J. Phys. Chem. Lett. 7 2100Google Scholar

    [27]

    Zheng Q J, Chu W B, Zhao C Y, Zhang L L, Guo H L, Wang Y N, Jiang X, Zhao J 2019 Wires Comput. Mol. Sci. 9 6

    [28]

    Li W, Vasenko A S, Tang J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 6219Google Scholar

    [29]

    Motta C, El-Mellouhi F, Sanvito S 2016 Phys. Rev. B 93 235412Google Scholar

    [30]

    Li W, Tang J, Casanova D, Prezhdo O V 2018 ACS Energy Lett. 3 2713Google Scholar

    [31]

    Justo J F, de Brito Mota F, Fazzio A 2002 Phys. Rev. B 65 073202Google Scholar

    [32]

    Kilina S V, Neukirch A J, Habenicht B F, Kilin D S, Prezhdo O V 2013 Phys. Rev. Lett. 110 180404Google Scholar

    [33]

    Jaeger H M, Fischer S, Prezhdo O V 2012 J. Chem. Phys. 137 22A545Google Scholar

  • 图 1  (a) CsPbBr3, (b) CsPb0.75Ge0.25Br3, (c) CsPb0.5Ge0.25Sn0.25Br3三种钙钛矿体系在0 K (上)和300 K (下)的晶体结构

    Fig. 1.  Crystal structure diagrams of three perovskite systems at 0 K (top) and 300 K (bottom) of (a) CsPbBr3, (b) CsPb0.75Ge0.25Br3, (c) CsPb0.5Ge0.25Sn0.25Br3.

    图 2  (a) CsPbBr3, (b) CsPb0.75Ge0.25Br3, (c) CsPb0.5Ge0.25Sn0.25Br3体系的DOS和PDOS

    Fig. 2.  Projected density of states (PDOS) of (a) CsPbBr3, (b) CsPb0.75Ge0.25Br3, (c) CsPb0.5Ge0.25Sn0.25Br3 systems.

    图 3  (a) CsPbBr3, (b) CsPb0.75Ge0.25Br3, (c) CsPb0.5Ge0.25Sn0.25Br3体系中HOMO和LUMO的电荷密度

    Fig. 3.  Charge densities of the photoexcited states showing HOMO and LUMO of (a) CsPbBr3, (b) CsPb0.75Ge0.25Br3, (c) CsPb0.5Ge0.25Sn0.25Br3 systems.

    图 4  (a) CsPb0.75Ge0.25Br3与CsPbBr3以及(b) CsPb0.5Ge0.25Sn0.25Br3与CsPbBr3体系的VBM和CBM的IPR对比(虚线为平均值)

    Fig. 4.  Comparison of IPRs between VBM and CBM of the doped system and the original system (dashed lines represent the average)

    图 5  CsPbBr3、CsPb0.75Ge0.25Br3和CsPb0.5Ge0.25Sn0.25Br3的HOMO布居数演化

    Fig. 5.  Population evolution of HUMO of the pristine CsPbBr3, CsPb0.75Ge0.25Br3, CsPb0.5Ge0.25Sn0.25Br3.

    表 1  CsPbBr3, CsPb0.75Ge0.25Br3, CsPb0.5Ge0.25Sn0.25Br3体系的带隙、非绝热耦合平均绝对值(NAC)、退相干时间(Tpd)和非辐射电荷复合时间(Trec)

    Table 1.  Bandgap, averaged absolute value of NA coupling (NAC), pure-dephasing time (Tpd), and nonradiative charge recombination time (Trec) of CsPbBr3, CsPb0.75Ge0.25Br3, CsPb0.5Ge0.25Sn0.25Br3 systems.

    Eg/eVNAC/meVTpd/fsTrec/ps
    CsPbBr31.732.08.97110
    CsPb0.75Ge0.25Br31.442.26.96176
    CsPb0.5Ge0.25Sn0.25Br31.052.16.20462
    下载: 导出CSV
    Baidu
  • [1]

    Cho C, Palatnik A, Sudzius M, Grodofzig R, Nehm F, Leo K 2020 ACS Appl. Mater. Interfaces 12 35242Google Scholar

    [2]

    Ito N, Kamarudin M A, Hirotani D, Zhang Y, Shen Q, Ogomi Y, Iikubo S, Minemoto T, Yoshino K, Hayase S 2018 J. Phys. Chem. Lett. 9 1682Google Scholar

    [3]

    Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [4]

    Quarti C, Marchal N, Beljonne D 2018 J. Phys. Chem. Lett. 9 3416Google Scholar

    [5]

    Shi R, Vasenko A S, Long R, Prezhdo O V 2020 J. Phys. Chem. Lett. 11 9100Google Scholar

    [6]

    Yu W, Li F, Yu L, Niazi M R, Zou Y, Corzo D, Basu A, Ma C, Dey S, Tietze M L, Buttner U, Wang X, Wang Z, Hedhili M N, Guo C, Wu T, Amassian A 2018 Nat. Commun. 9 5354Google Scholar

    [7]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [8]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [9]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog Photovolt 31 651Google Scholar

    [10]

    Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar

    [11]

    Liu Q, Wang Y, Sui N, Wang Y, Chi X, Wang Q, Chen Y, Ji W, Zou L, Zhang H 2016 Sci. Rep. 6 29442Google Scholar

    [12]

    Gerhard M, Louis B, Camacho R, Merdasa A, Li J, Kiligaridis A, Dobrovolsky A, Hofkens J, Scheblykin I G 2019 Nat. Commun. 10 1698Google Scholar

    [13]

    Kawai H, Giorgi G, Marini A, Yamashita K 2015 Nano Lett. 15 3103Google Scholar

    [14]

    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J-M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J 2018 ACS Nano 12 3477Google Scholar

    [15]

    Ray D, Clark C, Pham H Q, Borycz J, Holmes R J, Aydil E S, Gagliardi L 2018 J. Phys. Chem. C 122 7838Google Scholar

    [16]

    Ran C, Xiong W, Zhong H, Yuan S 2022 J. Phys. Chem. C 126 6448Google Scholar

    [17]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [18]

    Qian F, Hu M, Gong J, Ge C, Zhou Y, Guo J, Chen M, Ge Z, Padture N P, Zhou Y, Feng J 2020 J. Phys. Chem. C 124 11749Google Scholar

    [19]

    Liu M, Pasanen H, Ali‐Löytty H, Hiltunen A, Lahtonen K, Qudsia S, Smått J H, Valden M, Tkachenko N V, Vivo P 2020 Angew. Chem. Int. Ed. 59 22117Google Scholar

    [20]

    Li A, Liu Q, Chu W, Liang W, Prezhdo O V 2021 ACS Appl. Mater. Interfaces 13 16567Google Scholar

    [21]

    Stranks S D, Petrozza A 2016 Nat. Photonics 10 562Google Scholar

    [22]

    Dequilettes D W, Frohna K, Emin D, Kirchartz T, Bulovic V, Ginger D S, Stranks S D 2019 Chem. Rev. 119 11007Google Scholar

    [23]

    Kresse G, Furthmuller J, 1996 Phys. Rev. B 54 11169Google Scholar

    [24]

    Blochl P , Blöchl E, Blöchl P. E. 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Wang L, Akimov A, Prezhdo O V 2016 J. Phys. Chem. Lett. 7 2100Google Scholar

    [27]

    Zheng Q J, Chu W B, Zhao C Y, Zhang L L, Guo H L, Wang Y N, Jiang X, Zhao J 2019 Wires Comput. Mol. Sci. 9 6

    [28]

    Li W, Vasenko A S, Tang J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 6219Google Scholar

    [29]

    Motta C, El-Mellouhi F, Sanvito S 2016 Phys. Rev. B 93 235412Google Scholar

    [30]

    Li W, Tang J, Casanova D, Prezhdo O V 2018 ACS Energy Lett. 3 2713Google Scholar

    [31]

    Justo J F, de Brito Mota F, Fazzio A 2002 Phys. Rev. B 65 073202Google Scholar

    [32]

    Kilina S V, Neukirch A J, Habenicht B F, Kilin D S, Prezhdo O V 2013 Phys. Rev. Lett. 110 180404Google Scholar

    [33]

    Jaeger H M, Fischer S, Prezhdo O V 2012 J. Chem. Phys. 137 22A545Google Scholar

  • [1] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器.  , 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [2] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池.  , 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] 孙震, 吕项, 李盛, 安忠. 绝热表象下非绝热分子动力学方法.  , 2024, 73(14): 140201. doi: 10.7498/aps.73.20240401
    [4] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能.  , 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟.  , 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [6] 陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁. 形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究.  , 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [7] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池.  , 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [8] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理.  , 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [9] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟.  , 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [10] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池.  , 2021, (): . doi: 10.7498/aps.70.20211344
    [11] 郑镇法, 蒋翔, 褚维斌, 张丽丽, 郭宏礼, 赵传寓, 王亚南, 王傲雷, 郑奇靖, 赵瑾. 凝聚态体系中激发态载流子动力学研究.  , 2021, 70(17): 177101. doi: 10.7498/aps.70.20210626
    [12] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [13] 李晓克, 冯伟. 非绝热分子动力学的量子路径模拟.  , 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [14] 危洪清, 龙志林, 许福, 张平, 唐翌. Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究.  , 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [15] 陈谷然, 宋超, 徐骏, 王旦清, 徐岭, 马忠元, 李伟, 黄信凡, 陈坤基. 脉冲激光晶化超薄非晶硅膜的分子动力学研究.  , 2010, 59(8): 5681-5686. doi: 10.7498/aps.59.5681
    [16] 方 祺, 王 庆, 赵哲龙, 董远达. Nb添加对Cu-Zr非晶合金玻璃转变和晶化动力学的影响.  , 2007, 56(3): 1292-1296. doi: 10.7498/aps.56.1292
    [17] 张国英, 张 辉, 方戈亮, 李昱材. Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究.  , 2005, 54(11): 5288-5292. doi: 10.7498/aps.54.5288
    [18] 闫志杰, 李金富, 王鸿华, 周尧和. Zr60Al15Ni25大块非晶合金晶化动力学研究.  , 2003, 52(8): 1867-1870. doi: 10.7498/aps.52.1867
    [19] 郭永翔, 黑祖昆, 吴玉琨, 郭可信. Ni-Zr非晶合金晶化的透射电子显微镜研究(Ⅰ) ——Ni67Zr33晶化过程中的亚稳相.  , 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [20] 梁敬魁, 车广灿, 张玉苓. LiIO3-NaIO3赝二元系相图及其非晶态晶化动力学的研究.  , 1982, 31(5): 623-632. doi: 10.7498/aps.31.623
计量
  • 文章访问数:  2656
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-10-04
  • 上网日期:  2023-10-20
  • 刊出日期:  2024-01-20

/

返回文章
返回
Baidu
map