-
铯基全无机钙钛矿CsPbBr3具有良好的热稳定性, 在应用中表现出优越的发光特性, 是近年来光电领域的明星材料. CsPbBr3界面的光生载流子过程与其光电性能密切相关. 本文采用非绝热分子动力学方法结合含时密度泛函理论, 对CsPbBr3及其合金化结构的激发态动力学过程进行了系统研究. 研究结果表明, Sn/Ge合金化能够有效缩短退相干时间, 减缓电子-空穴复合. CsPb0.75Ge0.25Br3体系的载流子寿命延长至1.6倍, 而CsPb0.5Ge0.25Sn0.25Br3体系的载流子寿命延长为原始体系的4.2倍. 证明了B位(钙钛矿结构ABX3中的B位)金属阳离子的双原子合金化对CsPbBr3的非辐射电子-空穴复合具有很强的影响. 本研究提供了一种能够有效延长钙钛矿载流子寿命, 合理优化太阳能电池性能的合金化方案, 为未来钙钛矿太阳能电池材料的设计提供了思路.
-
关键词:
- CsPbBr3 /
- 非绝热分子动力学 /
- 合金化 /
- 非辐射电子-空穴复合
Perovskite solar cells have been a prominent focus in the field of photovoltaics in recent decades, owing to their exceptional performance: easy synthesis, and cost-effectiveness. The all-inorganic cesium-based perovskite CsPbBr3, known for its remarkable thermal stability, has become a star material in the field of optoelectronics due to its outstanding luminescent properties. Despite the high efficiency of lead-based perovskite solar cells, the toxicity associated with lead and the poor long-term stability of these devices remain significant barriers to their large-scale commercialization. As is well known, non-radiative electron-hole recombination significantly shortens the carrier lifetime, acting as a primary pathway for excited state charge to loss energy. This phenomenon directly affects the photovoltaic conversion efficiency and charge transfer performance of perovskite materials. Therefore, maximizing the reduction of non-radiative recombination energy loss in perovskite solar cells has become a crucial research focus. In this study, a systematic exploration is conducted by using a non-adiabatic molecular dynamics approach combined with time-dependent density functional theory to investigate the excited-state carrier dynamics of CsPbBr3 and its alloyed structures, CsPb0.75Ge0.25Br3 and CsPb0.5Ge0.25Sn0.25Br3. The study comprehensively analyzes the non-radiative electron-hole recombination scenarios and the mechanisms for reducing charge energy loss based on crystal structure, electronic properties, and excited-state properties. The research findings reveal that alloying with Sn/Ge can reduce the bandgap, increase non-adiabatic coupling, and shorten the decoherence time. The interplay of reduced quantum decoherence, smaller bandgap, and larger non-adiabatic coupling effectively decelerates the electron-hole recombination process. Consequently, the carrier lifetime of the CsPb0.75Ge0.25Br3 system extends by 1.6 times. Moreover, under the joint influence of Sn/Ge, the carrier lifetime of the CsPb0.5Ge0.25Sn0.25Br3 system extends by 4.2 times compared with those of the original system. The overall sequence follows CsPb0.5Ge0.25Sn0.25Br3 > CsPb0.75Ge0.25Br3 > CsPbBr3. This study underscores the significant influence of binary alloying of B-site metal cations (in the perovskite structure ABX3, where B-site refers to the metal cation) on the non-radiative electron-hole recombination of CsPbBr3.This research presents an effective alloying scheme that substantially prolongs the carrier lifetime of perovskites, offering a rational approach to optimizing solar cell performance. It lays the groundwork for the future design of perovskite solar cell materials.-
Keywords:
- CsPbBr3 /
- nonadiabatic molecular dynamics /
- alloy /
- nonradiative electron-hole recombination
[1] Cho C, Palatnik A, Sudzius M, Grodofzig R, Nehm F, Leo K 2020 ACS Appl. Mater. Interfaces 12 35242Google Scholar
[2] Ito N, Kamarudin M A, Hirotani D, Zhang Y, Shen Q, Ogomi Y, Iikubo S, Minemoto T, Yoshino K, Hayase S 2018 J. Phys. Chem. Lett. 9 1682Google Scholar
[3] Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar
[4] Quarti C, Marchal N, Beljonne D 2018 J. Phys. Chem. Lett. 9 3416Google Scholar
[5] Shi R, Vasenko A S, Long R, Prezhdo O V 2020 J. Phys. Chem. Lett. 11 9100Google Scholar
[6] Yu W, Li F, Yu L, Niazi M R, Zou Y, Corzo D, Basu A, Ma C, Dey S, Tietze M L, Buttner U, Wang X, Wang Z, Hedhili M N, Guo C, Wu T, Amassian A 2018 Nat. Commun. 9 5354Google Scholar
[7] Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar
[8] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar
[9] Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog Photovolt 31 651Google Scholar
[10] Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar
[11] Liu Q, Wang Y, Sui N, Wang Y, Chi X, Wang Q, Chen Y, Ji W, Zou L, Zhang H 2016 Sci. Rep. 6 29442Google Scholar
[12] Gerhard M, Louis B, Camacho R, Merdasa A, Li J, Kiligaridis A, Dobrovolsky A, Hofkens J, Scheblykin I G 2019 Nat. Commun. 10 1698Google Scholar
[13] Kawai H, Giorgi G, Marini A, Yamashita K 2015 Nano Lett. 15 3103Google Scholar
[14] Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J-M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J 2018 ACS Nano 12 3477Google Scholar
[15] Ray D, Clark C, Pham H Q, Borycz J, Holmes R J, Aydil E S, Gagliardi L 2018 J. Phys. Chem. C 122 7838Google Scholar
[16] Ran C, Xiong W, Zhong H, Yuan S 2022 J. Phys. Chem. C 126 6448Google Scholar
[17] Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar
[18] Qian F, Hu M, Gong J, Ge C, Zhou Y, Guo J, Chen M, Ge Z, Padture N P, Zhou Y, Feng J 2020 J. Phys. Chem. C 124 11749Google Scholar
[19] Liu M, Pasanen H, Ali‐Löytty H, Hiltunen A, Lahtonen K, Qudsia S, Smått J H, Valden M, Tkachenko N V, Vivo P 2020 Angew. Chem. Int. Ed. 59 22117Google Scholar
[20] Li A, Liu Q, Chu W, Liang W, Prezhdo O V 2021 ACS Appl. Mater. Interfaces 13 16567Google Scholar
[21] Stranks S D, Petrozza A 2016 Nat. Photonics 10 562Google Scholar
[22] Dequilettes D W, Frohna K, Emin D, Kirchartz T, Bulovic V, Ginger D S, Stranks S D 2019 Chem. Rev. 119 11007Google Scholar
[23] Kresse G, Furthmuller J, 1996 Phys. Rev. B 54 11169Google Scholar
[24] Blochl P , Blöchl E, Blöchl P. E. 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[26] Wang L, Akimov A, Prezhdo O V 2016 J. Phys. Chem. Lett. 7 2100Google Scholar
[27] Zheng Q J, Chu W B, Zhao C Y, Zhang L L, Guo H L, Wang Y N, Jiang X, Zhao J 2019 Wires Comput. Mol. Sci. 9 6
[28] Li W, Vasenko A S, Tang J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 6219Google Scholar
[29] Motta C, El-Mellouhi F, Sanvito S 2016 Phys. Rev. B 93 235412Google Scholar
[30] Li W, Tang J, Casanova D, Prezhdo O V 2018 ACS Energy Lett. 3 2713Google Scholar
[31] Justo J F, de Brito Mota F, Fazzio A 2002 Phys. Rev. B 65 073202Google Scholar
[32] Kilina S V, Neukirch A J, Habenicht B F, Kilin D S, Prezhdo O V 2013 Phys. Rev. Lett. 110 180404Google Scholar
[33] Jaeger H M, Fischer S, Prezhdo O V 2012 J. Chem. Phys. 137 22A545Google Scholar
-
表 1 CsPbBr3, CsPb0.75Ge0.25Br3, CsPb0.5Ge0.25Sn0.25Br3体系的带隙、非绝热耦合平均绝对值(NAC)、退相干时间(Tpd)和非辐射电荷复合时间(Trec)
Table 1. Bandgap, averaged absolute value of NA coupling (NAC), pure-dephasing time (Tpd), and nonradiative charge recombination time (Trec) of CsPbBr3, CsPb0.75Ge0.25Br3, CsPb0.5Ge0.25Sn0.25Br3 systems.
Eg/eV NAC/meV Tpd/fs Trec/ps CsPbBr3 1.73 2.0 8.97 110 CsPb0.75Ge0.25Br3 1.44 2.2 6.96 176 CsPb0.5Ge0.25Sn0.25Br3 1.05 2.1 6.20 462 -
[1] Cho C, Palatnik A, Sudzius M, Grodofzig R, Nehm F, Leo K 2020 ACS Appl. Mater. Interfaces 12 35242Google Scholar
[2] Ito N, Kamarudin M A, Hirotani D, Zhang Y, Shen Q, Ogomi Y, Iikubo S, Minemoto T, Yoshino K, Hayase S 2018 J. Phys. Chem. Lett. 9 1682Google Scholar
[3] Jena A K, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar
[4] Quarti C, Marchal N, Beljonne D 2018 J. Phys. Chem. Lett. 9 3416Google Scholar
[5] Shi R, Vasenko A S, Long R, Prezhdo O V 2020 J. Phys. Chem. Lett. 11 9100Google Scholar
[6] Yu W, Li F, Yu L, Niazi M R, Zou Y, Corzo D, Basu A, Ma C, Dey S, Tietze M L, Buttner U, Wang X, Wang Z, Hedhili M N, Guo C, Wu T, Amassian A 2018 Nat. Commun. 9 5354Google Scholar
[7] Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar
[8] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar
[9] Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog Photovolt 31 651Google Scholar
[10] Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar
[11] Liu Q, Wang Y, Sui N, Wang Y, Chi X, Wang Q, Chen Y, Ji W, Zou L, Zhang H 2016 Sci. Rep. 6 29442Google Scholar
[12] Gerhard M, Louis B, Camacho R, Merdasa A, Li J, Kiligaridis A, Dobrovolsky A, Hofkens J, Scheblykin I G 2019 Nat. Commun. 10 1698Google Scholar
[13] Kawai H, Giorgi G, Marini A, Yamashita K 2015 Nano Lett. 15 3103Google Scholar
[14] Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J-M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J 2018 ACS Nano 12 3477Google Scholar
[15] Ray D, Clark C, Pham H Q, Borycz J, Holmes R J, Aydil E S, Gagliardi L 2018 J. Phys. Chem. C 122 7838Google Scholar
[16] Ran C, Xiong W, Zhong H, Yuan S 2022 J. Phys. Chem. C 126 6448Google Scholar
[17] Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar
[18] Qian F, Hu M, Gong J, Ge C, Zhou Y, Guo J, Chen M, Ge Z, Padture N P, Zhou Y, Feng J 2020 J. Phys. Chem. C 124 11749Google Scholar
[19] Liu M, Pasanen H, Ali‐Löytty H, Hiltunen A, Lahtonen K, Qudsia S, Smått J H, Valden M, Tkachenko N V, Vivo P 2020 Angew. Chem. Int. Ed. 59 22117Google Scholar
[20] Li A, Liu Q, Chu W, Liang W, Prezhdo O V 2021 ACS Appl. Mater. Interfaces 13 16567Google Scholar
[21] Stranks S D, Petrozza A 2016 Nat. Photonics 10 562Google Scholar
[22] Dequilettes D W, Frohna K, Emin D, Kirchartz T, Bulovic V, Ginger D S, Stranks S D 2019 Chem. Rev. 119 11007Google Scholar
[23] Kresse G, Furthmuller J, 1996 Phys. Rev. B 54 11169Google Scholar
[24] Blochl P , Blöchl E, Blöchl P. E. 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[26] Wang L, Akimov A, Prezhdo O V 2016 J. Phys. Chem. Lett. 7 2100Google Scholar
[27] Zheng Q J, Chu W B, Zhao C Y, Zhang L L, Guo H L, Wang Y N, Jiang X, Zhao J 2019 Wires Comput. Mol. Sci. 9 6
[28] Li W, Vasenko A S, Tang J, Prezhdo O V 2019 J. Phys. Chem. Lett. 10 6219Google Scholar
[29] Motta C, El-Mellouhi F, Sanvito S 2016 Phys. Rev. B 93 235412Google Scholar
[30] Li W, Tang J, Casanova D, Prezhdo O V 2018 ACS Energy Lett. 3 2713Google Scholar
[31] Justo J F, de Brito Mota F, Fazzio A 2002 Phys. Rev. B 65 073202Google Scholar
[32] Kilina S V, Neukirch A J, Habenicht B F, Kilin D S, Prezhdo O V 2013 Phys. Rev. Lett. 110 180404Google Scholar
[33] Jaeger H M, Fischer S, Prezhdo O V 2012 J. Chem. Phys. 137 22A545Google Scholar
计量
- 文章访问数: 2656
- PDF下载量: 84
- 被引次数: 0