Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of silicon nanowires array photodetectors

Liu Xiao-Xuan Sun Fei-Yang Wu Ying Yang Sheng-Yi Zou Bing-Suo

Citation:

Research progress of silicon nanowires array photodetectors

Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo
PDF
HTML
Get Citation
  • As one of the most important semiconductor materials, silicon (Si) is widely used in optoelectronic devices such as solar cells and photodetectors. Owing to the difference in refractive index between silicon and air, a large amount of incident light is reflected back into the air from the silicon surface. In order to suppress the loss caused by this reflection, a variety of silicon nanostructures with strong trapping effect have been developed. Most of the dry-etching schemes encounter the problems of high cost and complex preparation, while the silicon nanowires array prepared by the wet-etching schemes has the problems of low controllability of some parameters such as the spacing between two adjacent nanowires, and the small effective area of heterojunction. The method of using polystyrene microsphere as the mask can integrate the advantages of dry-etching method and wet-etching method, and it is easy to obtain periodic silicon nanowires (pillars) array. In this paper, first, we summarize the properties and preparation methods for silicon nanowires structure, the strategies to effectively improve the performance of silicon nanowires (pillars) array photodetectors, Then we analyze the existing problems. Further, the latest developments of silicon nanowires (pillars) array photodetector are discussed, and the structure, morphology of photosensitive layer and methods to improve the performance parameters of silicon nanowires (pillars) array photodetector are analyzed. Among them, we focus on the ultraviolet light sensitive silicon based photodetector and its method to show tunable and selective resonance absorption through leaky mode resonance, the silicon nanowires array photodetector modified with metal nanoparticles and the method of improving performance through surface plasmon effect, and plasmon hot electrons. Heterojunction photodetectors composed of various low-dimensional materials and silicon nanowires (pillars) array, and methods to improve the collection efficiency of photogenerated charge carriers through the “core/shell” structure, methods to expand the detection band range of silicon-based photodetectors by integrating down-conversion light-emitting materials and silicon nanowires (pillars) array, flexible silicon nanowires array photodetectors and their various preparation methods, are all introduced. Then, the main problems that a large number of defect states will be generated on the silicon nanostructure surface in the MACE process are briefly introduced, and several possible solutions for defect passivation are also presented. Finally, the future development for silicon nanowires (pillars) array photodetectors is prospected.
      Corresponding author: Yang Sheng-Yi, syyang@bit.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. SQ2019YFB220038), the National Natural Science Foundation of China (Grant No. 1227041254), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 020CX02002, BITBLR2020013), and the Opening Fund of the “State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures” at Guangxi University, China (Grant No. 2021GXYSOF18).
    [1]

    Li C, Liu D, Dai D 2019 Nanophotonics 8 227Google Scholar

    [2]

    Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar

    [3]

    Lee S H, Kang J S, Kim D 2018 Materials 11 2557Google Scholar

    [4]

    Margalit N, Xiang C, Bowers S M, Bjorlin A, Blum R, Bowers J E 2021 Appl. Phys. Lett. 118 220501Google Scholar

    [5]

    Wang Y, Ding K, Sun B, Lee ST, Jie J 2016 Nano Res. 9 72Google Scholar

    [6]

    Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D 2021 Light Sci. Appl. 10 123Google Scholar

    [7]

    Zhou J, Xin K, Zhao X, Li D, Wei Z, Xia J 2022 Sci. China Mater. 65 876Google Scholar

    [8]

    Liu J J, Qu J L, Kirchartz T, Song J 2021 J. Mater. Chem. A 9 20919Google Scholar

    [9]

    Li C, Zhao J H, Chen Z G 2021 J. Alloy. Compd. 883 160765Google Scholar

    [10]

    Arjmand T, Legallais M, Nguyen T T T, et al. 2022 Nanomaterials 12 1043Google Scholar

    [11]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. 31 050825Google Scholar

    [12]

    Huo C, Wang J, Fu H, Li X, Yang Y, Wang H, Mateen A, Farid G, Peng K Q 2020 Adv. Funct. Mater. 30 2005744Google Scholar

    [13]

    Tian W, Sun H, Chen L, Wangyang P, Chen X, Xiong J, Li L 2019 InfoMat 1 140Google Scholar

    [14]

    Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar

    [15]

    Wang X, Tang Y, Wang W, Zhao H, Song Y, Kang C, Wang K 2022 Nanomaterials 12 1824Google Scholar

    [16]

    Rasool K, Rafiq M A, Ahmad M, Imran Z, Batool S S, Hasan M M 2013 AIP Adv. 3 082111Google Scholar

    [17]

    Liu J Y, Wang J J, Lin D H, Wang J, Fu C, Liang F X, Li X, Gu Z P, Wu D, Luo L B 2022 ACS Appl. Mater. Interfaces 14 32341Google Scholar

    [18]

    Ohmi T, Imaoka T, Kezuka T, Takano J, Kogure M 1993 J. Electrochem. Soc. 140 811Google Scholar

    [19]

    Morinaga H, Suyama M, Ohmi T 1994 J. Electrochem. Soc. 141 2834Google Scholar

    [20]

    Kim J S, Morita H, Joo J D, Ohmi T 1997 J. Electrochem. Soc. 144 3275Google Scholar

    [21]

    Morinaga H, Futatsuki T, Ohmi T, Fuchita E, Oda M, Hayashi C 1995 J. Electrochem. Soc. 142 966Google Scholar

    [22]

    Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J 2005 Angew. Chem. Int. Edit. 44 2737Google Scholar

    [23]

    Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, Zhu J 2006 Adv. Funct. Mater. 16 387Google Scholar

    [24]

    Peng K, Lu A, Zhang R, Lee S T 2008 Adv. Funct. Mater. 18 3026Google Scholar

    [25]

    Zhang X G, Collins S D, Smith R L 1989 J. Electrochem. Soc. 136 1561Google Scholar

    [26]

    Kolasinski K W 2010 J. Phys. Chem. C 114 22098Google Scholar

    [27]

    Turner D R 1960 J. Electrochem. Soc. 107 810Google Scholar

    [28]

    Peng K Q, Yan Y J, Gao S P, Zhu J 2002 Adv. Mater. 14 1164Google Scholar

    [29]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107Google Scholar

    [30]

    Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S 2006 Chem. Eur. J. 12 7942Google Scholar

    [31]

    Peng K, Zhu J 2003 J. Electroanal. Chem. 558 35Google Scholar

    [32]

    Tsujino K, Matsumura M 2005 Electrochem. Solid-St. 8 C193Google Scholar

    [33]

    Hildreth O J, Fedorov A G, Wong C P 2012 ACS Nano 6 10004Google Scholar

    [34]

    Chen H, Wang H, Zhang X H, Lee C S, Lee S T 2010 Nano Lett. 10 864Google Scholar

    [35]

    Kim J, Kim Y H, Choi S H, Lee W 2011 ACS Nano 5 5242Google Scholar

    [36]

    Chen Y, Li L, Zhang C, Tuan C C, Chen X, Gao J, Wong C P 2017 Nano Lett. 17 1014Google Scholar

    [37]

    Chen Y, Zhang C, Li L, Tuan C C, Wu F, Chen X, Gao J, Ding Y, Wong C P 2017 Nano Lett. 17 4304Google Scholar

    [38]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744Google Scholar

    [39]

    Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon A A 2013 ACS Appl. Mater. Interfaces 5 9620Google Scholar

    [40]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [41]

    Hildreth O J, Brown D, Wong C P 2011 Adv. Funct. Mater. 21 3119Google Scholar

    [42]

    Wang J, Hu Y, Zhao H, Fu H, Wang Y, Huo C, Peng K Q 2018 Adv. Mater. Interfaces 5 1801132Google Scholar

    [43]

    Lai R A, Hymel T M, Narasimhan V K, Cui Y 2016 ACS Appl. Mater. Interfaces 8 8875Google Scholar

    [44]

    Li L, Tuan C C, Zhang C, Chen Y, Lian G, Wong C P 2019 J. Microelectromech. Syst. 28 143Google Scholar

    [45]

    Li L, Zhao X, Wong C P 2015 ECS J. Solid State Sci. Technol. 4 P337Google Scholar

    [46]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [47]

    Han C, Chen Z, Zhang N, Colmenares J C, Xu Y J 2015 Adv. Funct. Mater. 25 221Google Scholar

    [48]

    Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M 2012 Adv. Mater. 24 5045Google Scholar

    [49]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841Google Scholar

    [50]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296Google Scholar

    [51]

    Kholmanov I N, Domingues S H, Chou H, et al. 2013 ACS Nano 7 1811Google Scholar

    [52]

    Huang Z G, Lin X X, Zeng Y, et al. 2015 Sol. Energy Mater. Sol. Cells 143 302Google Scholar

    [53]

    Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549Google Scholar

    [54]

    Wan X, Xu Y, Guo H, et al. 2017 NPJ 2D Mater. Appl. 1 4Google Scholar

    [55]

    Mokkapati S, Saxena D, Tan H H, Jagadish C 2015 Sci. Rep. 5 15339Google Scholar

    [56]

    Fountaine K T, Whitney W S, Atwater H A 2014 J. Appl. Phys. 116 153106Google Scholar

    [57]

    Cao L, White J S, Park J S, Schuller J A, Clemens B M, Brongersma M L 2009 Nat. Mater. 8 643Google Scholar

    [58]

    Wang B, Leu P W 2012 Opt. Lett. 37 3756Google Scholar

    [59]

    Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X, Luo L B 2021 ACS Nano 15 16729Google Scholar

    [60]

    Nusir A I, Bauman S J, Marie M S, Herzog J B, Manasreh M O 2017 Appl. Phys. Lett. 111 171103Google Scholar

    [61]

    Luo L B, Zeng L H, Xie C, Yu Y Q, Liang F X, Wu C Y, Wang L, Hu J G 2014 Sci. Rep. 4 3914Google Scholar

    [62]

    Kim K, Yoon S, Seo M, Lee S, Cho H, Meyyappan M, Baek C K 2019 Nat. Electron. 2 572Google Scholar

    [63]

    Vasa P, Lienau C 2010 Angew. Chem. Int. Edit. 49 2476Google Scholar

    [64]

    Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar

    [65]

    Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J, Tu Y 2017 Nanotechnology 28 275202Google Scholar

    [66]

    Huang Y, Liang H, Zhang Y, Yin S, Cai C, Liu W, Jia T 2021 ACS Appl. Nano Mater. 4 1567Google Scholar

    [67]

    Wang H, Wang F, Xu T, et al. 2021 Nano Lett. 21 7761Google Scholar

    [68]

    Mao C H, Dubey A, Lee F J, et al. 2021 ACS Appl. Mater. Interfaces 13 4126Google Scholar

    [69]

    Xie C, Nie B, Zeng L, Liang F X, Wang M Z, Luo L, Feng M, Yu Y, Wu C Y, Wu Y, Yu S H 2014 ACS Nano 8 4015Google Scholar

    [70]

    Mondal H, Dey T, Basori R 2021 ACS Appl. Nano Mater. 4 11938Google Scholar

    [71]

    Chandra A, Giri S, Das B, Ghosh S, Sarkar S, Chattopadhyay K K 2021 Appl. Surf. Sci. 548 149256Google Scholar

    [72]

    Liang W, Wang L, Li Y, Zhang F, Chen X, Wu D, Tian Y, Li X, Shan C, Shi Z 2021 Mater. Today Phys. 18 100398Google Scholar

    [73]

    Feng B, Pan X, Liu T, Tian S, Wang T, Chen Y 2021 Nano Lett. 21 5655Google Scholar

    [74]

    Tong X W, Wang J J, Li J X, Hu X F, Wu D, Luo L B 2021 Sensor. Actuat. A-Phys. 322 112625Google Scholar

    [75]

    Sun K, Jing Y, Park N, Li C, Bando Y, Wang D 2010 J. Am. Chem. Soc. 132 15465Google Scholar

    [76]

    Hong Q, Cao Y, Xu J, Lu H, He J, Sun J L 2014 ACS Appl. Mater. Interfaces 6 20887Google Scholar

    [77]

    Cao Y, Zhu J, Xu J, He J, Sun J L, Wang Y, Zhao Z 2014 Small 10 2345Google Scholar

    [78]

    Das B, Das N S, Sarkar S, Chatterjee B K, Chattopadhyay K K 2017 ACS Appl. Mater. Interfaces 9 22788Google Scholar

    [79]

    Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar

    [80]

    Henning A, Sangwan V K, Bergeron H, et al. 2018 ACS Appl. Mater. Interfaces 10 16760Google Scholar

    [81]

    Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G 2021 Phys. Status Solidi R. 15 2000537Google Scholar

    [82]

    Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W 2021 Sensors 21 6146Google Scholar

    [83]

    Mao J, Zhang B, Shi Y, Wu X, He Y, Wu D, Jie J, Lee C S, Zhang X 2022 Adv. Funct. Mater. 32 2108174Google Scholar

    [84]

    Lu J, Sheng X, Tong G, Yu Z, Sun X, Yu L, Xu X, Wang J, Xu J, Shi Y, Chen K 2017 Adv. Mater. 29 1700400Google Scholar

    [85]

    Mihalache I, Radoi A, Pascu R, Romanitan C, Vasile E, Kusko M 2017 ACS Appl. Mater. Interfaces 9 29234Google Scholar

    [86]

    Zhang M, Wang L, Meng L, et al. 2018 Adv. Opt. Mater. 6 1800077Google Scholar

    [87]

    Weisse J M, Kim D R, Lee C H, Zheng X 2011 Nano Lett. 11 1300Google Scholar

    [88]

    Mulazimoglu E, Coskun S, Gunoven M, Butun B, Ozbay E, Turan R, Unalan H E 2013 Appl. Phys. Lett. 103 083114Google Scholar

    [89]

    Xu Y, Shen H, Yue Z, Wang S, Zhao Q, Wang Z 2022 Surf. Interfaces 33 102288Google Scholar

    [90]

    Chee K W A, Ghosh B K, Saad I, Hong Y, Xia Q H, Gao P, Ye J, Ding Z J 2022 Nano Energy 95 106899Google Scholar

    [91]

    Dan Y, Seo K, Takei K, Meza J H, Javey A, Crozier K B 2011 Nano Lett. 11 2527Google Scholar

    [92]

    Yan J, Ge K, Li H, Yang X, Chen J, Wan L, Guo J, Li F, Xu Y, Song D, Flavel B S, Chen J 2021 Nanoscale 13 11439Google Scholar

  • 图 1  金属辅助硅蚀刻的微观解释[19]

    Figure 1.  Microscopic interpretation of metal-assisted chemical etching[19] .

    图 2  硅纳米柱阵列的蚀刻流程 (a)和蚀刻好的Si-NPs阵列示意图(b)[38]

    Figure 2.  Etching process for Si-NPs array (a) and the schematic diagram of etched Si-NPs array (b)[38] .

    图 3  在光照射下, 硅光敏层中产生光生载流子的原理示意图

    Figure 3.  Schematic diagram for photogenerated carriers in silicon photosensitive layer under illumination.

    图 4  紫外光敏感的硅基光电探测器件的光响应与波长的关系曲线[59]

    Figure 4.  Characteristics of responsivity vs. incident wavelength for the silicon-based photodetector which is sensitive to ultraviolet light[59].

    图 5  以硅纳米线为有源层的MSM紫外光电探测器结构示意图 (a)及其响应率与波长的关系曲线(b)[17]

    Figure 5.  (a) Schematic diagram for MSM ultraviolet photodetector with silicon nanowires as the active layer and (b) the curve for its responsivity vs. the incident wavelength[17].

    图 6  垂直Si-NW阵列尖端互连的p-n结光电探测器[66]

    Figure 6.  The p-n junction photodetector interconnected at the tips of vertical Si-NW array[66].

    图 7  基于MoS2/Ag-NP/Si-NW异质结的无栅极光电探测器结构示意图(a)及其响应率与入射光功率密度的关系(b)[68]

    Figure 7.  (a) Schematic diagram of gate-free photodetector based on MoS2/Ag-NP/Si-NW heterostructure and (b) the characteristics of its responsivity vs. incident light power density[68].

    图 8  Si-NW/N-GQD异质结构器件的光生载流子产生机制及传输机理示意图[70]

    Figure 8.  Schematic diagram of photogenerated carriers generation mechanism and their transmission mechanism for Si-NW/N-GQD heterojunction devices[70].

    图 9  Si-NW/Cs3Cu2I5 纳米晶异质结光电探测器[72]

    Figure 9.  Photodetector based on Si-NW/Cs3Cu2I5 nanocrystalline heterojunction[72].

    图 10  Si-NW/钙钛矿异质结光电探测器制备流程 (a)及器件结构(b)、能级图(c)和叉指状沟道的SEM照片(d)[81]

    Figure 10.  Preparation process (a) and device configuration (b), energy level diagram (c) and SEM photo of the interdigital channels (d) for the Si-NW/perovskite heterojunction photodetector[81].

    图 11  高性能Si-NTCA/石墨烯光电探测器结构示意图[82]

    Figure 11.  Schematic diagram of high-performance Si-NTCA/graphene photodetector[82].

    图 12  n-Bi2Se3/p-SiNWs光电探测器在探测波长范围内的响应率和探测率[15]

    Figure 12.  Responsivity and detectivity of n-Bi2Se3/p-SiNWs photodetector in the detection wavelength range[15].

    图 13  高质量“共形”Si-NW/MoS2异质结光电探测器的制备流程[83]

    Figure 13.  Preparation process for high-quality “conformal” Si-NW/MoS2 heterojunction photodetector[83].

    图 14  柔性硅基光电探测器的制备原理示意图[89]

    Figure 14.  Schematic diagram of the preparation principle for flexible silicon-based photodetectors[89].

    Baidu
  • [1]

    Li C, Liu D, Dai D 2019 Nanophotonics 8 227Google Scholar

    [2]

    Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar

    [3]

    Lee S H, Kang J S, Kim D 2018 Materials 11 2557Google Scholar

    [4]

    Margalit N, Xiang C, Bowers S M, Bjorlin A, Blum R, Bowers J E 2021 Appl. Phys. Lett. 118 220501Google Scholar

    [5]

    Wang Y, Ding K, Sun B, Lee ST, Jie J 2016 Nano Res. 9 72Google Scholar

    [6]

    Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D 2021 Light Sci. Appl. 10 123Google Scholar

    [7]

    Zhou J, Xin K, Zhao X, Li D, Wei Z, Xia J 2022 Sci. China Mater. 65 876Google Scholar

    [8]

    Liu J J, Qu J L, Kirchartz T, Song J 2021 J. Mater. Chem. A 9 20919Google Scholar

    [9]

    Li C, Zhao J H, Chen Z G 2021 J. Alloy. Compd. 883 160765Google Scholar

    [10]

    Arjmand T, Legallais M, Nguyen T T T, et al. 2022 Nanomaterials 12 1043Google Scholar

    [11]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. 31 050825Google Scholar

    [12]

    Huo C, Wang J, Fu H, Li X, Yang Y, Wang H, Mateen A, Farid G, Peng K Q 2020 Adv. Funct. Mater. 30 2005744Google Scholar

    [13]

    Tian W, Sun H, Chen L, Wangyang P, Chen X, Xiong J, Li L 2019 InfoMat 1 140Google Scholar

    [14]

    Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar

    [15]

    Wang X, Tang Y, Wang W, Zhao H, Song Y, Kang C, Wang K 2022 Nanomaterials 12 1824Google Scholar

    [16]

    Rasool K, Rafiq M A, Ahmad M, Imran Z, Batool S S, Hasan M M 2013 AIP Adv. 3 082111Google Scholar

    [17]

    Liu J Y, Wang J J, Lin D H, Wang J, Fu C, Liang F X, Li X, Gu Z P, Wu D, Luo L B 2022 ACS Appl. Mater. Interfaces 14 32341Google Scholar

    [18]

    Ohmi T, Imaoka T, Kezuka T, Takano J, Kogure M 1993 J. Electrochem. Soc. 140 811Google Scholar

    [19]

    Morinaga H, Suyama M, Ohmi T 1994 J. Electrochem. Soc. 141 2834Google Scholar

    [20]

    Kim J S, Morita H, Joo J D, Ohmi T 1997 J. Electrochem. Soc. 144 3275Google Scholar

    [21]

    Morinaga H, Futatsuki T, Ohmi T, Fuchita E, Oda M, Hayashi C 1995 J. Electrochem. Soc. 142 966Google Scholar

    [22]

    Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J 2005 Angew. Chem. Int. Edit. 44 2737Google Scholar

    [23]

    Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, Zhu J 2006 Adv. Funct. Mater. 16 387Google Scholar

    [24]

    Peng K, Lu A, Zhang R, Lee S T 2008 Adv. Funct. Mater. 18 3026Google Scholar

    [25]

    Zhang X G, Collins S D, Smith R L 1989 J. Electrochem. Soc. 136 1561Google Scholar

    [26]

    Kolasinski K W 2010 J. Phys. Chem. C 114 22098Google Scholar

    [27]

    Turner D R 1960 J. Electrochem. Soc. 107 810Google Scholar

    [28]

    Peng K Q, Yan Y J, Gao S P, Zhu J 2002 Adv. Mater. 14 1164Google Scholar

    [29]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107Google Scholar

    [30]

    Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S 2006 Chem. Eur. J. 12 7942Google Scholar

    [31]

    Peng K, Zhu J 2003 J. Electroanal. Chem. 558 35Google Scholar

    [32]

    Tsujino K, Matsumura M 2005 Electrochem. Solid-St. 8 C193Google Scholar

    [33]

    Hildreth O J, Fedorov A G, Wong C P 2012 ACS Nano 6 10004Google Scholar

    [34]

    Chen H, Wang H, Zhang X H, Lee C S, Lee S T 2010 Nano Lett. 10 864Google Scholar

    [35]

    Kim J, Kim Y H, Choi S H, Lee W 2011 ACS Nano 5 5242Google Scholar

    [36]

    Chen Y, Li L, Zhang C, Tuan C C, Chen X, Gao J, Wong C P 2017 Nano Lett. 17 1014Google Scholar

    [37]

    Chen Y, Zhang C, Li L, Tuan C C, Wu F, Chen X, Gao J, Ding Y, Wong C P 2017 Nano Lett. 17 4304Google Scholar

    [38]

    Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744Google Scholar

    [39]

    Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon A A 2013 ACS Appl. Mater. Interfaces 5 9620Google Scholar

    [40]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [41]

    Hildreth O J, Brown D, Wong C P 2011 Adv. Funct. Mater. 21 3119Google Scholar

    [42]

    Wang J, Hu Y, Zhao H, Fu H, Wang Y, Huo C, Peng K Q 2018 Adv. Mater. Interfaces 5 1801132Google Scholar

    [43]

    Lai R A, Hymel T M, Narasimhan V K, Cui Y 2016 ACS Appl. Mater. Interfaces 8 8875Google Scholar

    [44]

    Li L, Tuan C C, Zhang C, Chen Y, Lian G, Wong C P 2019 J. Microelectromech. Syst. 28 143Google Scholar

    [45]

    Li L, Zhao X, Wong C P 2015 ECS J. Solid State Sci. Technol. 4 P337Google Scholar

    [46]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [47]

    Han C, Chen Z, Zhang N, Colmenares J C, Xu Y J 2015 Adv. Funct. Mater. 25 221Google Scholar

    [48]

    Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M 2012 Adv. Mater. 24 5045Google Scholar

    [49]

    Lu W, Lieber C M 2007 Nat. Mater. 6 841Google Scholar

    [50]

    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296Google Scholar

    [51]

    Kholmanov I N, Domingues S H, Chou H, et al. 2013 ACS Nano 7 1811Google Scholar

    [52]

    Huang Z G, Lin X X, Zeng Y, et al. 2015 Sol. Energy Mater. Sol. Cells 143 302Google Scholar

    [53]

    Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549Google Scholar

    [54]

    Wan X, Xu Y, Guo H, et al. 2017 NPJ 2D Mater. Appl. 1 4Google Scholar

    [55]

    Mokkapati S, Saxena D, Tan H H, Jagadish C 2015 Sci. Rep. 5 15339Google Scholar

    [56]

    Fountaine K T, Whitney W S, Atwater H A 2014 J. Appl. Phys. 116 153106Google Scholar

    [57]

    Cao L, White J S, Park J S, Schuller J A, Clemens B M, Brongersma M L 2009 Nat. Mater. 8 643Google Scholar

    [58]

    Wang B, Leu P W 2012 Opt. Lett. 37 3756Google Scholar

    [59]

    Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X, Luo L B 2021 ACS Nano 15 16729Google Scholar

    [60]

    Nusir A I, Bauman S J, Marie M S, Herzog J B, Manasreh M O 2017 Appl. Phys. Lett. 111 171103Google Scholar

    [61]

    Luo L B, Zeng L H, Xie C, Yu Y Q, Liang F X, Wu C Y, Wang L, Hu J G 2014 Sci. Rep. 4 3914Google Scholar

    [62]

    Kim K, Yoon S, Seo M, Lee S, Cho H, Meyyappan M, Baek C K 2019 Nat. Electron. 2 572Google Scholar

    [63]

    Vasa P, Lienau C 2010 Angew. Chem. Int. Edit. 49 2476Google Scholar

    [64]

    Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar

    [65]

    Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J, Tu Y 2017 Nanotechnology 28 275202Google Scholar

    [66]

    Huang Y, Liang H, Zhang Y, Yin S, Cai C, Liu W, Jia T 2021 ACS Appl. Nano Mater. 4 1567Google Scholar

    [67]

    Wang H, Wang F, Xu T, et al. 2021 Nano Lett. 21 7761Google Scholar

    [68]

    Mao C H, Dubey A, Lee F J, et al. 2021 ACS Appl. Mater. Interfaces 13 4126Google Scholar

    [69]

    Xie C, Nie B, Zeng L, Liang F X, Wang M Z, Luo L, Feng M, Yu Y, Wu C Y, Wu Y, Yu S H 2014 ACS Nano 8 4015Google Scholar

    [70]

    Mondal H, Dey T, Basori R 2021 ACS Appl. Nano Mater. 4 11938Google Scholar

    [71]

    Chandra A, Giri S, Das B, Ghosh S, Sarkar S, Chattopadhyay K K 2021 Appl. Surf. Sci. 548 149256Google Scholar

    [72]

    Liang W, Wang L, Li Y, Zhang F, Chen X, Wu D, Tian Y, Li X, Shan C, Shi Z 2021 Mater. Today Phys. 18 100398Google Scholar

    [73]

    Feng B, Pan X, Liu T, Tian S, Wang T, Chen Y 2021 Nano Lett. 21 5655Google Scholar

    [74]

    Tong X W, Wang J J, Li J X, Hu X F, Wu D, Luo L B 2021 Sensor. Actuat. A-Phys. 322 112625Google Scholar

    [75]

    Sun K, Jing Y, Park N, Li C, Bando Y, Wang D 2010 J. Am. Chem. Soc. 132 15465Google Scholar

    [76]

    Hong Q, Cao Y, Xu J, Lu H, He J, Sun J L 2014 ACS Appl. Mater. Interfaces 6 20887Google Scholar

    [77]

    Cao Y, Zhu J, Xu J, He J, Sun J L, Wang Y, Zhao Z 2014 Small 10 2345Google Scholar

    [78]

    Das B, Das N S, Sarkar S, Chatterjee B K, Chattopadhyay K K 2017 ACS Appl. Mater. Interfaces 9 22788Google Scholar

    [79]

    Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar

    [80]

    Henning A, Sangwan V K, Bergeron H, et al. 2018 ACS Appl. Mater. Interfaces 10 16760Google Scholar

    [81]

    Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G 2021 Phys. Status Solidi R. 15 2000537Google Scholar

    [82]

    Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W 2021 Sensors 21 6146Google Scholar

    [83]

    Mao J, Zhang B, Shi Y, Wu X, He Y, Wu D, Jie J, Lee C S, Zhang X 2022 Adv. Funct. Mater. 32 2108174Google Scholar

    [84]

    Lu J, Sheng X, Tong G, Yu Z, Sun X, Yu L, Xu X, Wang J, Xu J, Shi Y, Chen K 2017 Adv. Mater. 29 1700400Google Scholar

    [85]

    Mihalache I, Radoi A, Pascu R, Romanitan C, Vasile E, Kusko M 2017 ACS Appl. Mater. Interfaces 9 29234Google Scholar

    [86]

    Zhang M, Wang L, Meng L, et al. 2018 Adv. Opt. Mater. 6 1800077Google Scholar

    [87]

    Weisse J M, Kim D R, Lee C H, Zheng X 2011 Nano Lett. 11 1300Google Scholar

    [88]

    Mulazimoglu E, Coskun S, Gunoven M, Butun B, Ozbay E, Turan R, Unalan H E 2013 Appl. Phys. Lett. 103 083114Google Scholar

    [89]

    Xu Y, Shen H, Yue Z, Wang S, Zhao Q, Wang Z 2022 Surf. Interfaces 33 102288Google Scholar

    [90]

    Chee K W A, Ghosh B K, Saad I, Hong Y, Xia Q H, Gao P, Ye J, Ding Z J 2022 Nano Energy 95 106899Google Scholar

    [91]

    Dan Y, Seo K, Takei K, Meza J H, Javey A, Crozier K B 2011 Nano Lett. 11 2527Google Scholar

    [92]

    Yan J, Ge K, Li H, Yang X, Chen J, Wan L, Guo J, Li F, Xu Y, Song D, Flavel B S, Chen J 2021 Nanoscale 13 11439Google Scholar

  • [1] Cheng Xue-Ming, Cui Wen-Yu, Zhu Lu-Ping, Wang Xia, Liu Zong-Ming, Cao Bing-Qiang. Vertical MSM-type CsPbBr3 thin film photodetectors with fast response speed and low dark current. Acta Physica Sinica, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [2] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [3] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [4] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [5] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [6] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [7] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [8] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [9] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [11] Lu Shun-Shun, Zhang Jin-Min, Guo Xiao-Tian, Gao Ting-Hong, Tian Ze-An, He Fan, He Xiao-Jin, Wu Hong-Xian, Xie Quan. Thermal stability of compound stucture of silicon nanowire encapsulated in carbon nanotubes. Acta Physica Sinica, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [12] Zhang Wei-Yi, Hu Ming, Liu Xing, Li Na, Yan Wen-Jun. Synthesis and gas-sensing properties of the silicon nanowires/vanadium oxide nanorods composite. Acta Physica Sinica, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [13] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [14] Liu Lin, Wang Yong-Tian. Investigation of photo-induced phenomenon in the silicon nanowires made by chemical etching in HF/Fe(NO3)3 solution. Acta Physica Sinica, 2015, 64(14): 148201. doi: 10.7498/aps.64.148201
    [15] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [16] Liang Lei, Xu Qin-Fang, Hu Man-Li, Sun Hao, Xiang Guang-Hua, Zhou Li-Bin. Investigation of anti-reflection properties of crystalline silicon solar cell surface silicon nanowire arrays. Acta Physica Sinica, 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [17] Liang Pei, Liu Yang, Wang Le, Wu Ke, Dong Qian-Min, Li Xiao-Yan. Investigation of the doping failure induced by DB in the SiNWs using first principles method. Acta Physica Sinica, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [18] Guo Jian-Chuan, Zuo Yu-Hua, Zhang Yun, Zhang Ling-Zi, Cheng Bu-Wen, Wang Qi-Ming. Theoretical analysis and experimental study of the space-charge-screening effect in uni-traveling-carrier photodiode. Acta Physica Sinica, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [19] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [20] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
Metrics
  • Abstract views:  7835
  • PDF Downloads:  339
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2022
  • Accepted Date:  25 December 2022
  • Available Online:  12 January 2023
  • Published Online:  20 March 2023

/

返回文章
返回
Baidu
map