-
Halide perovskite semiconductors have outstanding physical properties such as high light absorption coefficient, large carrier diffusion length, and high photoluminescence quantum efficiency, and demonstrate significant potential applications in optoelectronic devices such as photodetectors and solar cells. However, the toxicity and environmental instability associated with lead-based perovskites significantly limit their applications. An attractive solution is substituting tin for lead in perovskites and growing high-quality tin-based perovskite films. In this study, we adopt the pulsed laser deposition method to achieve the epitaxial growth of CsSnBr3 films on silicon substrates. The morphologies, optical and electrical properties of the CsSnBr3 films, as well as the CsSnBr3/Si heterojunction detectors, are comprehensively investigated with various characterization techniques, including XRD 2θ-ω and φ scans, atomic force microscope, scanning electron microscope, photoluminescence and time-resolved photoluminescence spectroscopy, and Hall electrical measurements. The results indicate that such a CsSnBr3 film grows epitaxially onto the silicon substrate via a face-to-face mode. Interestingly, an unusual temperature-dependent bandgap increase is found to be due to the high electron effective mass of CsSnBr3. The CsSnBr3 film shows the P-type semiconductor behavior with a high mobility of 122 cm²/(V·s), enabling the formation of an ideal Type-II heterojunction with the silicon substrate. The CsSnBr3/Si semiconductor heterojunction detector exhibits distinctive heterojunction PN diode characteristics in the dark and a pronounced photoresponse under illumination. At zero bias, the detector displays a switch ratio exceeding 104, responsivity of 0.125 mA/W, external quantum efficiency of 0.0238%, detectivity (
$D^* $ ) of 2.1×109 Jones, response time 3.23 ms, and recovery time of 4.87 ms. Under a small bias of –1 V, the switch ratio decreases to 50, but responsivity and external quantum efficiency increase by 568 times. The detectors can maintain self-powered operation state with a high switch ratio of 104, millisecond-level response time and millisecond-level recovery time. In conclusion, this work presents a self-powering, high-performance photodetector based on CsSnBr3 epitaxial films integrated with silicon substrates.-
Keywords:
- epitaxial /
- perovskite film /
- heterojunction /
- photodetector
[1] Wang T, Liang H L, Han Z Y, Sui Y X, Mei Z X 2021 Adv. Mater. Technol. 6 2000945Google Scholar
[2] Wang S l, Wu C, Wu F M, Zhang F B, Liu A P, Zhao N, Guo D Y 2021 Sens. Actuators A 330 112870Google Scholar
[3] Wan X, Xu Y, Guo H W, Shehzad K, Al A, Liu Y, Yang J Y, Dai D X, Lin C T, Liu L W, Cheng H C, Wan F Q, Wang X M, Lu H, Hu W D, Pi X D, Da Y P, Luo J K, Hasan T, Duan X F, Li X M, Xu J B, Yang D R, Ren T L, Yu B 2017 NPJ 2D Mater. Appl. 1 4Google Scholar
[4] Ran S, Glen T S, Li B, Shi D, Choi I S, Fitzgerald E A, Boles S T 2020 Nano Lett. 20 3492Google Scholar
[5] Li Z W, Luo J l, Hu S Q, Liu Q, Yu W J, Lu Y M, Liu X K 2020 Photonics Res. 8 799Google Scholar
[6] Shi K X, Li J H, Xiao Y C, Guo L, Chu X Y, Zhai Y J, Zhang B L, Lu D X, Rosei F 2020 ACS Appl. Mater. Interfaces 12 31382Google Scholar
[7] Wang B, Li J K, Wang W Z, Liu B, Liu Z M 2019 China Powder Sci. Technol. 25 63 [王 波, 李金凯, 王文志, 刘 斌, 刘宗明 2019 中国粉体技术 25 63]Google Scholar
Google ScholarWang B, Li J K, Wang W Z, Liu B, Liu Z M 2019 China Powder Sci. Technol.25 63 [8] Heo J H, Park J K, Yang Y M, Lee D S, Im S H 2021 iScience 24 102927Google Scholar
[9] Dong H, Ran C X, Gao W Y, Sun N, Liu X, Xia Y D, Chen Y H, Huang W 2021 Adv. Energy Mater. 12 2102213
[10] Wang L L, Chen P, Kuttipillai P S, King I, Staples R, Sun K, Lunt R R 2019 ACS Appl. Mater. Interfaces 11 32076Google Scholar
[11] Xu W L, Yuan H C, Yang X Y, Zhang Y N, Zheng M 2021 Physica E 134 114843Google Scholar
[12] Liu D, Yin Y X, Liu F J, Miao C C, Zhuang X M, Pang Z Y, Xu M S, Ming C, Yang Z X 2022 Rare Metals 41 1753Google Scholar
[13] Liu D, Liu F J, Zhang J, Sa Z X, Wang M X, Yip S P, Wan J C, Li P S, Yang Z X 2023 J. Electron. Sci. Technol. 21 100196Google Scholar
[14] Zhou Y, Yuan B L, Wei H M, Xu F, Li Y J, Chen X, Cao B Q 2022 Appl. Phys. Lett. 120 112109Google Scholar
[15] Wang X, Li Y W, Xu Y B, Pan Y Z, Zhu C Y, Zhu D J, Wu Y, Li G W, Zhang Q, Li Q, Zhang X B, Wu J, Chen J, Lei W 2020 Chem. Mater. 32 4973Google Scholar
[16] 王庆学 2005 54 3757Google Scholar
Wang Q X 2005 Acta Phys. Sin. 54 3757Google Scholar
[17] Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203Google Scholar
[18] Yu C L, Chen Z, Wang J J, Pfenninger W, Vockic N, Kenney J T, Shum K 2011 J. Appl. Phys. 110 063526Google Scholar
[19] O’Donnell K P, Chen X 1991 Appl. Phys. Lett. 58 2924Google Scholar
[20] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林 2021 70 158801Google Scholar
Gao L K, Zhao X H, Diao X F, Tang T Y, Tang Y L 2021 Acta Phys. Sin. 70 158801Google Scholar
[21] Heo J M, Cho H, Lee S C, Park M H, Kim J S, Kim H, Park J, Kim Y H, Yun H J, Yoon E, Kim D H, Ahn S, Kwon S J, Park C Y, Lee T W 2022 ACS Energy Lett. 7 2807Google Scholar
[22] Yuan B L, Wei H M, Li J W, Zhou Y, Xu F, Li J K, Cao B Q 2021 ACS Appl. Electron. Mater. 3 5592Google Scholar
[23] Zhang J J, Zhong Y 2022 Angew. Chem. Int. Ed. 61 e202212002Google Scholar
[24] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S 2016 ChemComm 52 2067Google Scholar
[25] 林煌丁, 刘相志, 方浩, 周全, 张恩亮, 严鑫, 冷重钱, 张风燕 2018 功能材料 49 6163
Lin H D, Liu X Z, Fang H, Zhou Q, Zhang E L, Yan X, Leng C Q, Zhang F Y 2018 Gongneng Cailiao 49 6163
[26] 郭越, 孙一鸣, 宋伟东 2022 71 218501Google Scholar
Guo Y, Sun Y M, Song W D 2022 Acta Phys. Sin. 71 218501Google Scholar
[27] Liang Z, Zeng P, Liu P, Zhao C, Xie W, Mai W 2016 ACS Appl. Mater. Interfaces 8 19158Google Scholar
[28] Yu W L, Li F, Huang T, Li W, Wu T 2023 Innovation (Camb) 4 100363Google Scholar
[29] Li B H, Long R Y, Yao Q S, Zhu Z H, Mi Q X 2019 J. Phys. Chem. Lett. 10 3699Google Scholar
[30] 刘恩科, 住秉升, 罗晋生 2008 半导体物理学(第七版)(北京: 电子工业出版社) 第188页
Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (7th Ed.) (Beijing: Electronics Industry Press) p188
-
图 1 (a) 基于Au/CsSnBr3/Si/Al异质PN结构的光电探测器示意图; (b) 单晶Si (100)衬底上外延CsSnBr3 (100)薄膜的晶格匹配示意图, 其中红色为Cs原子, 棕色为Sn原子, 黄色为Br原子, 蓝色为Si原子
Figure 1. (a) Photodetector device structure based on Au/CsSnBr3/Si/Al heterogeneous PN structure; (b) lattice matching between single-crystal Si (100) substrate and CsSnBr3 (100) epitaxial thin films, where red represents Cs atoms, brown represents Sn atoms, yellow represents Br atoms, blue represents Si atoms.
图 2 (a) 在Si衬底上的外延不同厚度CsSnBr3薄膜XRD的2θ-ω扫描图; (b) Si (110)和CsSnBr3 (110)峰的φ扫描; (c) CsSnBr3薄膜的AFM图像; (d) 在Si衬底上生长的CsSnBr3薄膜的SEM图像
Figure 2. (a) XRD 2θ-ω scan of epitaxial CsSnBr3 film on Si substrate; (b) φ scanning of Si (110) and CsSnBr3 (110) peaks; (c) AFM image of CsSnBr3 thin films; (d) SEM image of CsSnBr3 on Si substrate.
图 3 单晶Si衬底外延CsSnBr3薄膜 (a) 低温PL光谱; (b) 变温PL光谱; (c) 带隙随温度变化图; (d) 时间分辨荧光光谱(TRPL)
Figure 3. Single-crystal Si substrate epitaxial CsSnBr3 films: (a) Low temperature PL spectrum; (b) variable temperature PL spectrum; (c) band gap change with temperature diagram; (d) time-resolved photoluminescence spectroscopy (TRPL).
图 4 (a) 光电探测器在暗态下的I-V曲线; (b) 光电探测器在650 nm红光不同光照强度下的I-V曲线; (c) 光电探测器在不同偏置下的I-T曲线; (d) 光电探测器的瞬时光响应特性
Figure 4. (a) I-V curve of a photodetector in dark state; (b) I-V curve of photodetector under different light intensity of 650 nm lase; (c) I-T curves of photodetectors with different biases; (d) instantaneous light response characteristics of photodetectors.
图 5 在650 nm红光照射与零偏置下, 光电探测器随不同光强度的光电响应测试 (a)—(d)分别为光电流(Ip)、响应率(R)、外量子效率(EQE)、比探测率($D^*$)
Figure 5. Photoelectric response test of photodetector under 650 nm red light irradiation and 0 V bias: (a) Ip as a function of light intensity; (b) R as a function of light intensity; (c) EQE as a function of light intensity; (d) $D^*$ as a function of light intensity.
表 1 不同偏置下CsSnBr3/Si异质结光电探测器的性能比较
Table 1. Performance comparison of CsSnBr3/Si heterojunction photodetectors with different biases.
Sample Bias/V Switch ratio R/(mA·W–1) EQE/% D*/Jones CsSnBr3 0 7×104 0.125 0.0238 2.1×109 CsSnBr3 –0.01 781 0.149 0.0283 7.77×108 CsSnBr3 –0.1 119 0.485 0.0926 7.24×108 CsSnBr3 –1 50 71 13.5 2.1×1010 -
[1] Wang T, Liang H L, Han Z Y, Sui Y X, Mei Z X 2021 Adv. Mater. Technol. 6 2000945Google Scholar
[2] Wang S l, Wu C, Wu F M, Zhang F B, Liu A P, Zhao N, Guo D Y 2021 Sens. Actuators A 330 112870Google Scholar
[3] Wan X, Xu Y, Guo H W, Shehzad K, Al A, Liu Y, Yang J Y, Dai D X, Lin C T, Liu L W, Cheng H C, Wan F Q, Wang X M, Lu H, Hu W D, Pi X D, Da Y P, Luo J K, Hasan T, Duan X F, Li X M, Xu J B, Yang D R, Ren T L, Yu B 2017 NPJ 2D Mater. Appl. 1 4Google Scholar
[4] Ran S, Glen T S, Li B, Shi D, Choi I S, Fitzgerald E A, Boles S T 2020 Nano Lett. 20 3492Google Scholar
[5] Li Z W, Luo J l, Hu S Q, Liu Q, Yu W J, Lu Y M, Liu X K 2020 Photonics Res. 8 799Google Scholar
[6] Shi K X, Li J H, Xiao Y C, Guo L, Chu X Y, Zhai Y J, Zhang B L, Lu D X, Rosei F 2020 ACS Appl. Mater. Interfaces 12 31382Google Scholar
[7] Wang B, Li J K, Wang W Z, Liu B, Liu Z M 2019 China Powder Sci. Technol. 25 63 [王 波, 李金凯, 王文志, 刘 斌, 刘宗明 2019 中国粉体技术 25 63]Google Scholar
Google ScholarWang B, Li J K, Wang W Z, Liu B, Liu Z M 2019 China Powder Sci. Technol.25 63 [8] Heo J H, Park J K, Yang Y M, Lee D S, Im S H 2021 iScience 24 102927Google Scholar
[9] Dong H, Ran C X, Gao W Y, Sun N, Liu X, Xia Y D, Chen Y H, Huang W 2021 Adv. Energy Mater. 12 2102213
[10] Wang L L, Chen P, Kuttipillai P S, King I, Staples R, Sun K, Lunt R R 2019 ACS Appl. Mater. Interfaces 11 32076Google Scholar
[11] Xu W L, Yuan H C, Yang X Y, Zhang Y N, Zheng M 2021 Physica E 134 114843Google Scholar
[12] Liu D, Yin Y X, Liu F J, Miao C C, Zhuang X M, Pang Z Y, Xu M S, Ming C, Yang Z X 2022 Rare Metals 41 1753Google Scholar
[13] Liu D, Liu F J, Zhang J, Sa Z X, Wang M X, Yip S P, Wan J C, Li P S, Yang Z X 2023 J. Electron. Sci. Technol. 21 100196Google Scholar
[14] Zhou Y, Yuan B L, Wei H M, Xu F, Li Y J, Chen X, Cao B Q 2022 Appl. Phys. Lett. 120 112109Google Scholar
[15] Wang X, Li Y W, Xu Y B, Pan Y Z, Zhu C Y, Zhu D J, Wu Y, Li G W, Zhang Q, Li Q, Zhang X B, Wu J, Chen J, Lei W 2020 Chem. Mater. 32 4973Google Scholar
[16] 王庆学 2005 54 3757Google Scholar
Wang Q X 2005 Acta Phys. Sin. 54 3757Google Scholar
[17] Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203Google Scholar
[18] Yu C L, Chen Z, Wang J J, Pfenninger W, Vockic N, Kenney J T, Shum K 2011 J. Appl. Phys. 110 063526Google Scholar
[19] O’Donnell K P, Chen X 1991 Appl. Phys. Lett. 58 2924Google Scholar
[20] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林 2021 70 158801Google Scholar
Gao L K, Zhao X H, Diao X F, Tang T Y, Tang Y L 2021 Acta Phys. Sin. 70 158801Google Scholar
[21] Heo J M, Cho H, Lee S C, Park M H, Kim J S, Kim H, Park J, Kim Y H, Yun H J, Yoon E, Kim D H, Ahn S, Kwon S J, Park C Y, Lee T W 2022 ACS Energy Lett. 7 2807Google Scholar
[22] Yuan B L, Wei H M, Li J W, Zhou Y, Xu F, Li J K, Cao B Q 2021 ACS Appl. Electron. Mater. 3 5592Google Scholar
[23] Zhang J J, Zhong Y 2022 Angew. Chem. Int. Ed. 61 e202212002Google Scholar
[24] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S 2016 ChemComm 52 2067Google Scholar
[25] 林煌丁, 刘相志, 方浩, 周全, 张恩亮, 严鑫, 冷重钱, 张风燕 2018 功能材料 49 6163
Lin H D, Liu X Z, Fang H, Zhou Q, Zhang E L, Yan X, Leng C Q, Zhang F Y 2018 Gongneng Cailiao 49 6163
[26] 郭越, 孙一鸣, 宋伟东 2022 71 218501Google Scholar
Guo Y, Sun Y M, Song W D 2022 Acta Phys. Sin. 71 218501Google Scholar
[27] Liang Z, Zeng P, Liu P, Zhao C, Xie W, Mai W 2016 ACS Appl. Mater. Interfaces 8 19158Google Scholar
[28] Yu W L, Li F, Huang T, Li W, Wu T 2023 Innovation (Camb) 4 100363Google Scholar
[29] Li B H, Long R Y, Yao Q S, Zhu Z H, Mi Q X 2019 J. Phys. Chem. Lett. 10 3699Google Scholar
[30] 刘恩科, 住秉升, 罗晋生 2008 半导体物理学(第七版)(北京: 电子工业出版社) 第188页
Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (7th Ed.) (Beijing: Electronics Industry Press) p188
Catalog
Metrics
- Abstract views: 2615
- PDF Downloads: 69
- Cited By: 0