-
Laser intensity noise suppression in the millihertz frequency band is essential for space-based gravitational wave detection to ensure the sensitivity of the interferometer. Optoelectronic feedback technology is one of the most effective methods of suppressing laser intensity noise. , The noise of the photodetector that is the first-stage component in the feedback loop, directly couples into the feedback loop, thus significantly affecting the laser intensity noise. In this paper, starting from the requirement of suppressing laser intensity noise in the 0.1 mHz–1 Hz frequency band for space-based gravitational wave detection, the factors affecting the electronics of photodetectors at extremely low frequencies are analyzed in detail. Using the low dark current characteristic of photodiodes in photovoltaic mode, a zero-bias voltage scheme is adopted to reduce the dark noise of the photodiode. A transimpedance amplification circuit is designed using an integrated operational amplifier with zero offset voltage drift and low-temperature drift metal foil resistors, thereby optimizing the transimpedance capacitor and follower circuit to reduce 1/f noise in the circuit. Active temperature control is employed to stabilize the responsivity of photodiode, and additional measures such as using a homemade low-noise power supply and shielding interference are taken to further reduce the noise. Ultimately, an ultra-low electronic noise photodetector operating in the 0.1 mHz–1 Hz frequency band is developed. A homemade intensity noise evaluation system is used to comprehensively assess the noise both in the time domain and in the frequency domain. The constant noise characteristics of the homemade detector are estimated experimentally. The experimental results show that the electronic noise spectral density of the homemade detector reaches 2×10–6 V/Hz1/2 in the 0.1 mHz–1 Hz frequency band, and the electronic noise of the detector does not vary with optical power. The detector achieves a gain of 35 kV/W at 1064 nm. The noise performance of the detector is two orders of magnitude lower than the laser intensity noise requirement (10–4 Hz–1/2) for space-based gravitational wave detection, providing a critical component and technical support for high-gain optoelectronic feedback control and laser intensity noise suppression in space-based gravitational wave detection.
-
Keywords:
- space-based gravitational wave detection /
- laser intensity noise /
- photodetector /
- millihertz band
-
图 5 光电探测器测试原理图, 其中Laser为固体激光器, ISO为光隔离器; λ/2为半波片, PBS为偏振分束器, Filter为光衰减器, PD为光电探测器; Meter为高精度数字万用表
Figure 5. Photodetector test diagram, where Laser is soild-state laser; ISO is optical isolator; λ/2 is half-wave-plate: PBS is polarization beam splitter; Filter is optical attenuator; PD is photodetector; Meter is high-precision digital multimeter.
表 1 三种低噪声运放芯片关键参数对比
Table 1. Comparison of the key parameters of the three op amp chip.
Operational
Amplifier modelOffset voltage
drift/(μV·℃–1)Input offset
voltage/μVInput offset
current/ nAInput noise voltage
(0.1—10 Hz)/ nVp-pAD8671 0.3 30 8 77 AD797 0.2 30 120 50 LTC1151 0.01 0.5 0.02 1500 -
[1] Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B 2016 Phys. Rev. Lett. 116 061102
Google Scholar
[2] Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R X, Adya V B, Affeldt C, Agathos M 2020 Astrophys. J. Lett. 896 L44
Google Scholar
[3] Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102
Google Scholar
[4] Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2
Google Scholar
[5] Jennrich O 2009 Class. Quantum Grav. 26 153001
Google Scholar
[6] 王在渊, 王洁浩, 李字航, 罗子人, 陈欣, 赵琴, 武延鹏, 郑耀辉 2023 72 054205
Google Scholar
Wang Z Y, Wang J H, Li Z H, Luo Z R, Chen X, Zhao Q, Wu Y P, Zheng Y H 2023 Acta Phys. Sin. 72 054205
Google Scholar
[7] Badaracco F, Harms J, De Rossi C, Martynov D, Swinkels B L, Shoda A, van Heijningen J, Staley A, Matone L, Boschi V, Ohashi M, Hild S, Naticchioni L 2021 Phys. Rev. D 104 042006
Google Scholar
[8] 李卫, 谢超帮, 李庆回, 孙瑜, 张亚斌, 武延鹏, 王雅君, 郑耀辉 2023 量子光学学报 29 24
Li W, Xie C B, Li Q H, Sun Y, Zhang Y B, Wu Y P, Wang Y J, Zheng Y H 2023 Quantum Opt. 29 24
[9] 李庆回, 李卫, 孙瑜, 张亚斌, 武延鹏, 王雅君, 郑耀辉 2022 71 164203
Google Scholar
Li Q H, Li W, Sun Y, Zhang Y B, Wu Y P, Wang Y J, Zheng Y H 2022 Acta Phys. Sin. 71 164203
Google Scholar
[10] Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912
Google Scholar
[11] 刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201
Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 Quantum Opt. 31 040201
[12] Vahlbruch H, Wilken D, Mechmet M, Willke B 2018 Phys. Rev. Lett. 121 173601
Google Scholar
[13] Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294
Google Scholar
[14] Luo Z, Wang Y, Wu Y, Mei J, Zhong Y, Hu Y, Yang S, Chen P, Chen X, Chen Y 2021 Prog. Theor. Exp. Phys. 2021 05A108
Google Scholar
[15] Luo J, Chen L S, Duan H Z 2016 Class. Quantum Grav. 33 035010
Google Scholar
[16] Buchler B C, Huntington E H, Harb C C 1998 Phys. Rev. A 57 1286
Google Scholar
[17] Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover
[18] 张骥 2020 博士学位论文 (合肥: 中国科学技术大学)
Zhang J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[19] 李玉琼, 王璐钰, 王晨昱 2019 光学精密工程 27 1710
Google Scholar
Li Y Q, Wang L Y, Wang C Y 2019 Opt. Precis. Eng. 27 1710
Google Scholar
[20] 王炜杰, 李番, 李健博 2022 红外与激光工程 51 20220300
Google Scholar
Wang W J, Li F, Li J B 2022 Infrared Laser Eng. 51 20220300
Google Scholar
[21] 郑立昂, 李番, 王嘉伟 2023 光子学报 52 282
Zheng L A, Li F, Wang J W 2023 Acta Photonica Sin. 52 282
[22] Understanding and Eliminating 1/f Noise, Robert K https://www.analog.com/en/resources/analog-dialogue/articles/2017/04/21/10/42/understanding-and-eliminating-1-f-noise.html [2024-12-10]
[23] Measuring 2nV/√Hz Noise and 120 dB Supply Rejection on Linear Regulators, Todd O, Amit P https://www.analog.com/cn/resources/app-notes/an-159.html [2024-12-10]
[24] Sallusti M, Gath P, Weise D, Rivas M, Vitelli M 2009 Class. Quantum Grav. 26 094015
Google Scholar
[25] Cutler C, Thorne K S 2002 General Relativity and Gravitation (Singapore: World Scientific) pp72-111
[26] Hayashida T, Nanjo T, Furukawa A, Yamamuka M 2017 Appl. Phys. Express 10 061003
Google Scholar
[27] Li W S, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635
Google Scholar
[28] Singh R, Cooper J A, Melloch M R, Chow T P, Palmour J W 2002 IEEE Trans. Electron Devices 49 665
Google Scholar
[29] Zhou H J, Yang W H, Li Z X, Li X F, Zheng Y H 2014 Rev. Sci. Instrum. 85 013111
Google Scholar
[30] Using MCP6491 Op Amps for Photodetection Applications, Yang Zhen https://ww1.microchip.com/downloads/en/Appnotes/01494A.pdf [2024-12-10]
[31] Graeme J G 1996 Photodiode Amplifiers: Op Amp Solutions 1st ed (New York: McGraw-Hill) pp 21-23
[32] Chilingarian A 1995 Pattern Recognit. Lett. 16 335
[33] Chen X, Luo M, Hu R Z, Zhang R J, Yao P F, Xu J J 2019 J. Manuf. Process. 41 111
Google Scholar
[34] Williams J 2001 Electrical Design News: The Magazine of the Electronics Industry 46 83
[35] 李番, 王嘉伟, 高子超, 李林, 武延鹏, 王雅君, 郑耀辉 2022 71 209501
Google Scholar
Li F, Wang J W, Gao Z C, Li L, Wu Y P, Wang Y J, Zheng Y H 2022 Acta Phys. Sin. 71 209501
Google Scholar
Metrics
- Abstract views: 457
- PDF Downloads: 16
- Cited By: 0