-
Two dimensional materials have been attracting intensive interest due to their unique physical and optoelectronic properties. As an emerging two dimensional materials, SnSe2 have shown a considerable potential for next-generation electronic and optoelectronic. Herein, SnSe2 bulk crystals have been prepared by a chemical vapour transport method with high purity tin and selenium powder as precursors. Then SnSe2 multilayers has been successfully prepared by a micromechanical exfoliation method from the SnSe2 bulk crystals. The phase structures and elemental composition of the bulk crystal are investigated using an X-Ray diffractometer, an X-ray photoelectrons spectrometer and a Raman spectrometer. And the morphologies are observed using an optical microscope, an atomic force microscope and a transmission electron microscope. The measurement results show that the SnSe2 bulks are single crystals with a high crystallization and purity. The SnSe2 multilayers have a size of 25–35 μm and a thickness of 1.4 nm. To detect the electronic and photoresponse characteristics of the SnSe2 multilayers, a field effect transistor based on such SnSe2 are fabricated via a photolithographic-pattern-transfer method. The transistor has a smooth surface without wrinkles and bubbles, and also has a good contact with Au electrodes. The transistor shows a linear output characteristic and an obvious rectification. The on/off ratio of the device is 47.9 and the electron mobility is 0.25 cm2·V–1·s–1. As a photodetector, the field effect transistor exhibits obvious photoresponse to three visible lights with the wavelengths of 405, 532, and 650 nm. As the lasers are turned on and the device is under illuminations of three visible lights, the current increase rapidly to a saturation state. Then as the lasers are switched off, the current decrease and recover to the original state. The drain-source current can alternate between high and low states rapidly and reversibly, which demonstrates photoresponse characteristics of the devices are stable and sensible. Notably, it shows a strongest response to the 405 nm light at an intensity of 5.4 mW/cm2 with a high responsivity of 19.83 A/W, a good external quantum efficiency of 6.07 × 103%, a normalized detectivity of 4.23 × 1010 Jones, and a fast response time of 23.8 ms. The results of this work demonstrate that layered SnSe2 can be a suitable and excellent candidate for visible light photodetector and has a huge potential for high-performance optoelectronic devices.
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J W, Chim C Y, Galli G L, Wang F 2010 Nano Lett. 10 1271Google Scholar
[3] Zhou X, Zhang Q, Gan L, Li H Q, Xiong J, Zhai T Y 2016 Adv. Sci. 3 1600177Google Scholar
[4] Huang Y, Xu K, Shifa A T, Wang Q S, Wang F, Jiang C, He J 2015 Nanoscale 7 17375Google Scholar
[5] Rai R K, Islam S, Roy A, Agrawal G, Singh A K, Ghosh A, Ravishankar N 2019 Nanoscale 11 870Google Scholar
[6] Martínez-Escobar D, Ramachandran M, Sánchez-Juárez A, Rios N J S 2013 Thin Solid Films 535 390Google Scholar
[7] Mukhokosi P E, Krupanidhi S B, Nanda K K 2018 Phys. Status Solidi A 215 1800470Google Scholar
[8] Moonshik K, Rathi S, Lee I, Li L, Khan M A, Lim D, Lee D, Lee Y, Park J, Pham A T, Duong A T, Cho S, Yun J L, Kim G H 2018 J. Nanosci. Nanotechnol. 18 4243Google Scholar
[9] Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar
[10] Krishna M, Kallatt S 2017 Nanotechnology 29 03250
[11] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[12] Tian H, Fan C, Liu G Z, Zhang Y H, Wang M J, Li E P 2018 J. Mater. Sci. 54 2059
[13] 郑朝, 孙明轩, 张强, 吴淞要 2018 现代化工 38 122
Zheng Z, Sun M X, Zhang Q, Wu H Y 2018 Mod. Chem. Ind. 38 122
[14] Liu Y, Guo J, Zhu E B, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar
[15] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培 2015 64 016102Google Scholar
Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102Google Scholar
[16] 孙兰, 张龙, 马飞 2017 中国材料进展 36 40
Sun L, Zhang L, Ma F 2017 Mat-China 36 40
[17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 67 118502Google Scholar
Zheng J J, Wang Y R, Yu K H, Xv X X, Sheng X X, Hu E T, Wei W 2018 Acta Phys. Sin. 67 118502Google Scholar
[18] Tan P F, Chen X, Wu L D, Shang Y Y, Liu W W, Pan J, Xiong X 2017 Appl. Catal., B 202 326Google Scholar
[19] Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457Google Scholar
[20] Feldman Y, Wasserman E, Srolovitz D J, Tenne R 1995 Science 267 222Google Scholar
[21] Zhou X, Zhang Q, Gan L, Li H Q, Zhai T Y 2016 Adv. Sci. 26 4405
[22] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 67 218201Google Scholar
Xv H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T S, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201Google Scholar
-
图 7 I-V特性曲线 (a) 405 nm; (b) 532 nm; (c) 650 nm. 光电流曲线 (d) 405 nm; (e) 532 nm; (f) 650 nm. 光响应的上升沿和下降沿 (g) 405 nm; (h) 532 nm; (i) 650 nm
Figure 7. I-V curve: (a) 405 nm; (b) 532 nm; (c) 650 nm. Photocurrent curve: (d) 405 nm; (e) 532 nm; (f) 650 nm. Rising edge and falling edge: (g) 405 nm; (h) 532 nm; (i) 650 nm.
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J W, Chim C Y, Galli G L, Wang F 2010 Nano Lett. 10 1271Google Scholar
[3] Zhou X, Zhang Q, Gan L, Li H Q, Xiong J, Zhai T Y 2016 Adv. Sci. 3 1600177Google Scholar
[4] Huang Y, Xu K, Shifa A T, Wang Q S, Wang F, Jiang C, He J 2015 Nanoscale 7 17375Google Scholar
[5] Rai R K, Islam S, Roy A, Agrawal G, Singh A K, Ghosh A, Ravishankar N 2019 Nanoscale 11 870Google Scholar
[6] Martínez-Escobar D, Ramachandran M, Sánchez-Juárez A, Rios N J S 2013 Thin Solid Films 535 390Google Scholar
[7] Mukhokosi P E, Krupanidhi S B, Nanda K K 2018 Phys. Status Solidi A 215 1800470Google Scholar
[8] Moonshik K, Rathi S, Lee I, Li L, Khan M A, Lim D, Lee D, Lee Y, Park J, Pham A T, Duong A T, Cho S, Yun J L, Kim G H 2018 J. Nanosci. Nanotechnol. 18 4243Google Scholar
[9] Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar
[10] Krishna M, Kallatt S 2017 Nanotechnology 29 03250
[11] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[12] Tian H, Fan C, Liu G Z, Zhang Y H, Wang M J, Li E P 2018 J. Mater. Sci. 54 2059
[13] 郑朝, 孙明轩, 张强, 吴淞要 2018 现代化工 38 122
Zheng Z, Sun M X, Zhang Q, Wu H Y 2018 Mod. Chem. Ind. 38 122
[14] Liu Y, Guo J, Zhu E B, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar
[15] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培 2015 64 016102Google Scholar
Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102Google Scholar
[16] 孙兰, 张龙, 马飞 2017 中国材料进展 36 40
Sun L, Zhang L, Ma F 2017 Mat-China 36 40
[17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 67 118502Google Scholar
Zheng J J, Wang Y R, Yu K H, Xv X X, Sheng X X, Hu E T, Wei W 2018 Acta Phys. Sin. 67 118502Google Scholar
[18] Tan P F, Chen X, Wu L D, Shang Y Y, Liu W W, Pan J, Xiong X 2017 Appl. Catal., B 202 326Google Scholar
[19] Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457Google Scholar
[20] Feldman Y, Wasserman E, Srolovitz D J, Tenne R 1995 Science 267 222Google Scholar
[21] Zhou X, Zhang Q, Gan L, Li H Q, Zhai T Y 2016 Adv. Sci. 26 4405
[22] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 67 218201Google Scholar
Xv H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T S, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201Google Scholar
Catalog
Metrics
- Abstract views: 10215
- PDF Downloads: 294
- Cited By: 0