搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Au纳米岛修饰的CdSSe纳米带光电探测器

赵吉玉 谭秋红 刘磊 杨伟业 王前进 刘应开

引用本文:
Citation:

基于Au纳米岛修饰的CdSSe纳米带光电探测器

赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开

High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt

Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai
PDF
HTML
导出引用
  • 三元合金CdSxSe1–x兼具CdS和CdSe的物理性质, 其带隙可以通过改变元素的组分来调节. 该合金具有优异的光电性能, 在光电器件方面具有潜在的应用价值. 本文首先通过热蒸发法制备了单晶CdS0.42Se0.58纳米带器件, 在550 nm光照及1 V偏压下, 器件的光电流与暗电流之比为1.24×103, 光响应度达60.1 A/W, 外量子效率达1.36×104%, 探测率达2.16×1011 Jones, 其上升/下降时间约为41.1/41.5 ms. 其次, 通过Au纳米岛修饰该CdS0.42Se0.58纳米带后, 器件的光电性能显著提升, 在550 nm光照及1 V偏压下, 器件的光开关比、响应度、外量子效率及探测率分别提高了5.4倍、11.8倍、11.8倍和10.6倍, 并且上升/下降时间均缩短了近一半. 最后基于Au纳米岛的局域表面等离子共振解释了器件光电性能增强的微观物理机制, 为在不增大器件面积的前提下, 制备高性能光电探测器提供了一种有效策略.
    Ternary alloy CdSxSe1–x has the physical properties of CdS and CdSe, and its band gap can be adjusted by changing the component ratio of the elements. The alloy has excellent photoelectric properties and has potential application in optoelectronic devices. Although one has made some research progress of the CdSSe-based photodetectors, their performances are still far from the commercial requirements, so how to improve the performance of the device is the focus of current research. In this work, a single crystal CdS0.42Se0.58 nanobelt device is first prepared by thermal evaporation. Under 550 nm illumination and 1 V bias, the ratio of photocurrent to dark current of the device is 1.24×103, the responsivity arrives at 60.1 A/W, and the external quantum efficiency reaches 1.36×104%, and the detectivity is 2.16×1011 Jones. Its rise time and fall time are about 41.1/41.5 ms, respectively. Secondly, after the CdSSe nanobelt is decorated by Au nanoislands, the optoelectronic performance of the device is significantly improved. Under 550 nm illumination and 1 V bias, the Ip/Id ratio, responsivity, external quantum efficiency and detectivity of the device are increased by 5.4, 11.8, 11.8 and 10.6 times, respectively, and the rise time and fall time are both reduced to half of counterparts of single CdSSe nanobelt. Finally, the microscopic physical mechanism of the enhanced optoelectronic performance of the device is explained based on localized surface plasmon resonance of Au nanoislands. After the combination of gold nanoislands and CdSSe nanobelt, the difference in Fermi level between them results in the transfer of electrons from CdSSe nanobelt to Au nanoislands, thus forming an internal electric field at the interface, which is directed from CdSSe nanobelt to Au nanoislands. Under illumination, the electrons in the Au nanoislands acquire enough energy to jump over the Schottky barrier because of localized surface plasmon resonance. These photoexcited hot electrons are trapped and stored in extra energy levels above the conduction band minimum, and then are cooled down to the band edge, thus realizing the transfer of electrons from Au nanoislands to CdSSe nanobelt. Moreover, the internal electric field also greatly promotes the transfer of hot electrons from Au nanoislands to CdSSe nanobelt, and inhibits the recombination of carriers at the interface, resulting in large photocurrent. Our work provides an effective strategy for fabricating high-performance photodetectors without increasing the device area.
      通信作者: 谭秋红, tanqiuhong1@126.com ; 王前进, qjwang@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61564010, 11864046, 11764046)和云南省基础研究面上项目(批准号: 202001AT070064, 202101AT070124)资助的课题.
      Corresponding author: Tan Qiu-Hong, tanqiuhong1@126.com ; Wang Qian-Jin, qjwang@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564010, 11864046, 11764046) and the Basic Research Program of Yunnan Province, China (Grant Nos. 202001AT070064, 202101AT070124).
    [1]

    Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y, Golberg D S 2009 Adv. Mater. 21 2034Google Scholar

    [2]

    An Q W, Meng X J 2016 J. Mater. Sci-Mater. El. 27 11952Google Scholar

    [3]

    Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L 2010 Nat. Nanotechnol. 5 366Google Scholar

    [4]

    Zhai T Y, Li L, Ma Y, Liao M Y, Wang X, Fang X S, Yao J N, Bando Y, Golberg D 2011 Chem. Soc. Rev. 40 2986Google Scholar

    [5]

    Hong Y J, Saroj R K, Park W I, Yi G C 2021 Apl Mater. 9 060907Google Scholar

    [6]

    Cao F R, Tian W, Gu B K, Ma Y L, Lu H, Li L 2017 Nano Res. 10 2244Google Scholar

    [7]

    Teng F, Zheng L X, Hu K, Chen H Y, Li Y M, Zhang Z M, Fang X S 2016 J. Mater. Chem. C 4 8416Google Scholar

    [8]

    Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X, Lee S T 2007 Adv. Funct. Mater. 17 1795Google Scholar

    [9]

    Li L, Wu P C, Fang X S, Zhai T Y, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y, Golberg D 2010 Adv. Mater. 22 3161Google Scholar

    [10]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar

    [11]

    Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T, Golberg D 2009 Adv. Mater. 21 5016Google Scholar

    [12]

    Chuo H X, Wang T Y, Zhang W G 2014 J. Alloy. Compd. 606 231Google Scholar

    [13]

    Peng M F, Wen Z, Shao M W, Sun X H 2017 J. Mater. Chem. C 5 7521Google Scholar

    [14]

    Hassanien A S, Akl A A 2016 Superlattice. Microst. 89 153Google Scholar

    [15]

    Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T 2005 Adv. Mater. 17 1372Google Scholar

    [16]

    Rani T D, Tamilarasan K, Elangovan E, Leela S, Ramamurthi K, Thangaraj K, Himcinschi C Trenkmann I, Schulze S, Hietschold M, Liebig A, Salvan G, Zahn D R T 2015 Superlattice. Microst. 77 325Google Scholar

    [17]

    Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T 1999 Thin Solid Films 349 220Google Scholar

    [18]

    Ding C J, Lu T Q, Wazir N, Ma W F, Guo S, Xin Y, Li A, Liu R B, Zou B S 2021 Acs Appl. Mater. Inter. 13 30959Google Scholar

    [19]

    Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloy. Compd. 649 793Google Scholar

    [20]

    Pan A L, Yang H, Yu R C, Zou B S 2006 Nanotechnology 17 1083Google Scholar

    [21]

    Liu H W, Lu J P, Yang Z Y, Teng J H, Ke L, Zhang X H, Tong L M, Sow C H 2016 Sci. Rep-Uk. 6 27387Google Scholar

    [22]

    Guo P F, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Zhou H, Shan Z P, Xu J Y, Pan A L 2014 Adv. Mater. 26 2844Google Scholar

    [23]

    Li X M, Tan Q H, Feng X B, Wang Q J, Liu Y K 2018 Nanoscale Res. Lett. 13 171Google Scholar

    [24]

    Peng M F, Xie X K, Zheng H C, Wang Y J, Zhou Q Q, Yuan G T, Ma W L, Shao M W, Wen Z, Sun X H 2018 Acs Appl. Mater. Inter. 10 43887Google Scholar

    [25]

    Moger S N, Mahesha M G 2021 J. Alloy. Compd. 870 159479Google Scholar

    [26]

    Choi H, Lee J P, Ko S J, Jung J W, Park H, Yoo S, Park O, Jeong J R, Park S, Kim J Y 2013 Nano Lett. 13 2204Google Scholar

    [27]

    Halas N J 2010 Nano Lett. 10 3816Google Scholar

    [28]

    Liang Z Q, Sun J, Jiang Y Y, Jiang L, Chen X D 2014 Plasmonics 9 859Google Scholar

    [29]

    管昱多 2022 博士学位论文 (长春: 吉林大学)

    Guan Y D 2022 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [30]

    Li H C, Peng S, Qin K, Hong Q Q, Tan Q H, Zhang X J, Liu Y K, Lou J 2019 Phys. Status Solidi A 216 23Google Scholar

    [31]

    Nazirzadeh M A, Atar F B, Turgut B B, Okyay A K 2014 Sci. Rep-Uk. 4 7103Google Scholar

    [32]

    Tian H Y, Liu X, Liang Z Q, Qiu P Y, Qian X, Cui H Z, Tian J 2019 J. Colloid Interf. Sci. 557 700Google Scholar

    [33]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 Acs Nano 8 3302Google Scholar

    [34]

    Notarianni M, Vernon K, Chou A, Aljada M, Liu J Z, Motta N 2014 Sol. Energy 106 23Google Scholar

    [35]

    Liu Y, Huang W, Chen W J, Wang X W, Guo J X, Tian H, Zhang H N, Wang Y T, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar

    [36]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [37]

    Shi Z F, Li Y, Li S, Li X J, Wu D, Xu T T, Tian Y T, Chen Y S, Zhang Y T, Zhang B L 2018 Adv. Funct. Mater. 28 1707031Google Scholar

    [38]

    Wang W Y, Klots A, Prasai D, Yang Y M, Bolotin K L, Valentine J 2015 Nano Lett. 15 7440Google Scholar

    [39]

    Hu K, Chen H Y, Jiang M M, Teng F, Zheng L X, Fang X S 2016 Adv. Funct. Mater. 26 6641Google Scholar

    [40]

    Lin Z M, Luo P Q, Zeng W, Lai H J, Xie W G, Deng W L, Luo Z 2020 Opt. Mater. 108 110191Google Scholar

    [41]

    Loutfy R O, Nag D S 1984 Solar Energy Mater. 11 319Google Scholar

    [42]

    Hossain M A, Jenning J R, Mathews N, Wang Q 2012 Phys. Chem. Chem. Phys. 14 7161Google Scholar

    [43]

    Garcia L V, Mendivil M I, Guillen G G, Martinez J A A, Krishnan B, Avellaneda D, Castillo G A, Das Roy T K, Shaji S 2015 Appl. Surf. Sci. 336 329Google Scholar

    [44]

    Deng J P, Li L, Gou Y C, Fang J F, Feng R, Lei Y L, Song X H, Yang Z 2020 Electrochimica Acta 356 136845Google Scholar

    [45]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927Google Scholar

    [46]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [47]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar

    [48]

    Dong Y H, Xu L M, Zhao Y L, Wang S L, Song J Z, Zou Y S, Zeng H B 2021 Adv. Mater. Interfaces 8 2002053Google Scholar

    [49]

    Liu F C, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I, Tanigaki K 2014 Acs Nano 8 752Google Scholar

    [50]

    Xia J, Zhao Y X, Wang L, Li X Z, Gu Y Y, Cheng H Q, Meng X M 2017 Nanoscale 9 13786Google Scholar

    [51]

    An Q W, Meng X Q, Xiong K, Qiu Y L, Lin W H 2017 J. Alloy. Compd. 726 214Google Scholar

    [52]

    Jin B, Huang P, Zhang Q, Zhou X, Zhang X W, Li L, Su J W, Li H Q, Zhai T Y 2018 Adv. Funct. Mater. 28 1800181Google Scholar

    [53]

    Ye Y, Gan L, Dai L, Dai Y, Guo X F, Meng H, Yu B, Shi Z J, Shang K P, Qin G G 2011 Nanoscale 3 1477Google Scholar

    [54]

    Di T, Cheng B, Ho W, Yu J, Tang H 2019 Appl. Surf. Sci. 470 196Google Scholar

    [55]

    Avanesian T, Christopher P 2014 J. Phys. Chem. C 118 28017Google Scholar

    [56]

    Boerigter C, Aslam U, Linic S 2016 Acs Nano 10 6108Google Scholar

    [57]

    Wang H L, Wang F, Xu T F, Xia H, Xie R Z, Zhou X H, Ge X, Liu W W, Zhu Y C, Sun L X, Guo J X, Ye J F, Zubair M, Luo M, Yu C H, Sun D Y, Li T X, Zhuang Q D, Fu L, Hu W D, Lu W 2021 Nano Lett. 21 7761Google Scholar

    [58]

    Kumar A, Husale S, Srivastava A K, Dutta P K, Dhar A 2014 Nanoscale 6 8192Google Scholar

    [59]

    Sharma A, Kumar R, Bhattacharyya B, Husale S 2016 Sci. Rep-Uk. 6 22939Google Scholar

    [60]

    李含春 2018 硕士学位论文 (昆明: 云南师范大学)

    Li H C 2018 M. S. Dissertation (Kunming: Yunnan Normal University) (in Chinese)

    [61]

    Zhang K, Luo T, Chen H R, Lou Z, Shen G Z 2017 J. Mater. Chem. C 5 3330Google Scholar

  • 图 1  (a)和(b) CdSSe纳米带SEM图; (c) Au@CdSSe纳米带SEM图(插图为放大后的Au纳米岛的SEM图); (d)和(e) CdSSe纳米带的TEM图((e)插图为CdSSe纳米带的SAED图); (f) Au纳米粒子的TEM图

    Fig. 1.  (a) and (b) SEM images of CdSSe nanobelts; (c) SEM images of Au@CdSSe nanobelts (inset: SEM images of Au nanoislands (NIS)); (d) and (e) TEM images of CdSSe nanobelts (inset: SAED images of CdSSe nanobelts in (e)); (f) TEM images of Au nanoparticles.

    图 2  (a) CdSSe纳米带的XRD图; (b)—(d) CdSSe纳米带的XPS图

    Fig. 2.  (a) XRD patterns of CdSSe nanobelts; (b)–(d) XPS images of CdSSe nanobelts.

    图 3  (a)—(d) CdSSe纳米带的元素面扫描; (e)—(i)Au纳米岛@CdSSe纳米带的元素面扫描

    Fig. 3.  (a)–(d) Element surface scanning of CdSSe nanobelt; (e)–(i) the element surface scan of the Au NIS @CdSSe nanobelts.

    图 4  (a) Au纳米岛@CdSSe纳米带器件SEM图以及(b)光电探测器示意图

    Fig. 4.  The SEM image of (a) Au NIS@CdSSe nanobelts device and (b) its schematic illustrations.

    图 5  (a) CdSSe纳米带以及Au纳米岛@CdSSe纳米带光电探测器在1 V偏压下的光谱响应图; (b)单一CdSSe纳米带及Au纳米岛的紫外-可见光光谱图(插图为带隙拟合图); (c), (d) CdSSe纳米带以及Au纳米岛@CdSSe纳米带光电探测器在550 nm单色光、0.697 mW/cm2光功率密度下的I-V

    Fig. 5.  (a) Spectral response of CdSSe nanobelt and Au NIS@CdSSe nanobelt photodetectors at 1 V bias; (b) UV-visible spectrum of single CdSSe nanobelt (inset is bandgap diagram) and NIS; (c), (d) the I-V plots of CdSSe nanobelt and Au NIS@CdSSe nanobelt photodetectors under optical power density of 0.697 mW/cm2 at 550 nm.

    图 6  (a) CdSSe纳米带光电探测器在550 nm单色光不同光功率密度下的I-V曲线图, 以及(b)光电流与光功率密度的函数拟合关系图; (c) Au纳米岛修饰的CdSSe纳米带光电探测器在550 nm单色光不同光功率密度下的I-V曲线图, 以及(d)光电流与光功率密度的函数拟合关系图

    Fig. 6.  (a) The I-V curves of CdSSe nanobelt photodetectors with different optical power densities under 550 nm light, and (b) the fitting relation diagram of the function of photocurrent and optical power density; (c) the I-V curves of the Au NIS decorated CdSSe nanobelt photodetector with different optical power densities under 550 nm light, and (d) the fitting relation diagram of the function of photocurrent and optical power density.

    图 7  Au纳米岛修饰CdSSe纳米带前后探测器在550 nm单色光下光谱响应、外量子效率及探测率随光功率密度的变化关系图

    Fig. 7.  Relationship between spectral response, external quantum efficiency, detectivity and optical power densities of CdSSe nanobelt and Au NIS decorated CdSSe nanobelt devices, respectively.

    图 8  (a), (b) CdSSe纳米带光电探测器在550 nm光功率密度为 0.697 mW/cm2下的周期性I-t图以及单个I-t图; (c), (d) Au纳米岛@CdSSe纳米带光电探测器在550 nm光功率密度为0.697 mW/cm2下的周期性I-t图以及单个I-t

    Fig. 8.  (a) and (b) Periodic I-t diagram and single I-t diagram of CdSSe nanobelt photodetector under 550 nm and optical power density of 0.697 mW/cm2; (c) and (d) the periodic I-t plots and individual I-t plots of the Au NIS@CdSSe nanobelt photodetector under 550 nm and optical power density of 0.697 mW/cm2.

    图 9  Au纳米岛与CdSSe纳米带接触前后体系能带结构示意图 (a)接触前CdSSe纳米带在光激发下电子跃迁图; (b)接触后光激发下Au纳米岛@CdSSe纳米带电子转移示意图; E0为真空能级、WAuWCdSSe为Au和CdSSe的功函数、EVEC为价带顶和导带底

    Fig. 9.  Band structure diagram of CdSSe nanoribbon before and after contact with Au NIS: (a) Electron transition diagram of pure CdSSe nanoribbon under photoexcitation; (b) schematic diagram of electron transfer of Au@CdSSe nanobelt under photoexcitation; E0 is the vacuum energy level, WAu and WCdSSe are the work functions of Au and CdSSe, EV and EC are the valence band maximum and conduction band minimum, respectively

    表 1  基于其他低维度高性能光电探测器重要参数比较

    Table 1.  Comparison of important parameters based on other low-dimension high-performance photodetectors.

    Device structureBias voltage/VEQE/%R/(A·W–1)Ip/IdD*/JonesRise/decay timeRef.
    CdS0.76Se0.24 NBs119.110.4 (674 nm)8161.62/4.70 ms[23]
    2D CdS0.14Se0.86 flaks51.94×103703 (450 nm)233.41×1010 39/39 ms[50]
    CdSe Nanotubes176 (氙灯)1.29×1032.75×10101.85/0.2 s[51]
    2D CdS flake20.18 (Visible)1032.71×10914/8 ms[52]
    CdSSe NBs11.36×10460.1 (550 nm)1.24×1032.16×101141.1/41.5 msThis work
    Au NIS@CdSSe NBs11.61×105711.4 (550 nm)6.70×1032.29×101222.6/23.0 msThis work
    下载: 导出CSV
    Baidu
  • [1]

    Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y, Golberg D S 2009 Adv. Mater. 21 2034Google Scholar

    [2]

    An Q W, Meng X J 2016 J. Mater. Sci-Mater. El. 27 11952Google Scholar

    [3]

    Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L 2010 Nat. Nanotechnol. 5 366Google Scholar

    [4]

    Zhai T Y, Li L, Ma Y, Liao M Y, Wang X, Fang X S, Yao J N, Bando Y, Golberg D 2011 Chem. Soc. Rev. 40 2986Google Scholar

    [5]

    Hong Y J, Saroj R K, Park W I, Yi G C 2021 Apl Mater. 9 060907Google Scholar

    [6]

    Cao F R, Tian W, Gu B K, Ma Y L, Lu H, Li L 2017 Nano Res. 10 2244Google Scholar

    [7]

    Teng F, Zheng L X, Hu K, Chen H Y, Li Y M, Zhang Z M, Fang X S 2016 J. Mater. Chem. C 4 8416Google Scholar

    [8]

    Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X, Lee S T 2007 Adv. Funct. Mater. 17 1795Google Scholar

    [9]

    Li L, Wu P C, Fang X S, Zhai T Y, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y, Golberg D 2010 Adv. Mater. 22 3161Google Scholar

    [10]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar

    [11]

    Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T, Golberg D 2009 Adv. Mater. 21 5016Google Scholar

    [12]

    Chuo H X, Wang T Y, Zhang W G 2014 J. Alloy. Compd. 606 231Google Scholar

    [13]

    Peng M F, Wen Z, Shao M W, Sun X H 2017 J. Mater. Chem. C 5 7521Google Scholar

    [14]

    Hassanien A S, Akl A A 2016 Superlattice. Microst. 89 153Google Scholar

    [15]

    Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T 2005 Adv. Mater. 17 1372Google Scholar

    [16]

    Rani T D, Tamilarasan K, Elangovan E, Leela S, Ramamurthi K, Thangaraj K, Himcinschi C Trenkmann I, Schulze S, Hietschold M, Liebig A, Salvan G, Zahn D R T 2015 Superlattice. Microst. 77 325Google Scholar

    [17]

    Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T 1999 Thin Solid Films 349 220Google Scholar

    [18]

    Ding C J, Lu T Q, Wazir N, Ma W F, Guo S, Xin Y, Li A, Liu R B, Zou B S 2021 Acs Appl. Mater. Inter. 13 30959Google Scholar

    [19]

    Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloy. Compd. 649 793Google Scholar

    [20]

    Pan A L, Yang H, Yu R C, Zou B S 2006 Nanotechnology 17 1083Google Scholar

    [21]

    Liu H W, Lu J P, Yang Z Y, Teng J H, Ke L, Zhang X H, Tong L M, Sow C H 2016 Sci. Rep-Uk. 6 27387Google Scholar

    [22]

    Guo P F, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Zhou H, Shan Z P, Xu J Y, Pan A L 2014 Adv. Mater. 26 2844Google Scholar

    [23]

    Li X M, Tan Q H, Feng X B, Wang Q J, Liu Y K 2018 Nanoscale Res. Lett. 13 171Google Scholar

    [24]

    Peng M F, Xie X K, Zheng H C, Wang Y J, Zhou Q Q, Yuan G T, Ma W L, Shao M W, Wen Z, Sun X H 2018 Acs Appl. Mater. Inter. 10 43887Google Scholar

    [25]

    Moger S N, Mahesha M G 2021 J. Alloy. Compd. 870 159479Google Scholar

    [26]

    Choi H, Lee J P, Ko S J, Jung J W, Park H, Yoo S, Park O, Jeong J R, Park S, Kim J Y 2013 Nano Lett. 13 2204Google Scholar

    [27]

    Halas N J 2010 Nano Lett. 10 3816Google Scholar

    [28]

    Liang Z Q, Sun J, Jiang Y Y, Jiang L, Chen X D 2014 Plasmonics 9 859Google Scholar

    [29]

    管昱多 2022 博士学位论文 (长春: 吉林大学)

    Guan Y D 2022 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [30]

    Li H C, Peng S, Qin K, Hong Q Q, Tan Q H, Zhang X J, Liu Y K, Lou J 2019 Phys. Status Solidi A 216 23Google Scholar

    [31]

    Nazirzadeh M A, Atar F B, Turgut B B, Okyay A K 2014 Sci. Rep-Uk. 4 7103Google Scholar

    [32]

    Tian H Y, Liu X, Liang Z Q, Qiu P Y, Qian X, Cui H Z, Tian J 2019 J. Colloid Interf. Sci. 557 700Google Scholar

    [33]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 Acs Nano 8 3302Google Scholar

    [34]

    Notarianni M, Vernon K, Chou A, Aljada M, Liu J Z, Motta N 2014 Sol. Energy 106 23Google Scholar

    [35]

    Liu Y, Huang W, Chen W J, Wang X W, Guo J X, Tian H, Zhang H N, Wang Y T, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar

    [36]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar

    [37]

    Shi Z F, Li Y, Li S, Li X J, Wu D, Xu T T, Tian Y T, Chen Y S, Zhang Y T, Zhang B L 2018 Adv. Funct. Mater. 28 1707031Google Scholar

    [38]

    Wang W Y, Klots A, Prasai D, Yang Y M, Bolotin K L, Valentine J 2015 Nano Lett. 15 7440Google Scholar

    [39]

    Hu K, Chen H Y, Jiang M M, Teng F, Zheng L X, Fang X S 2016 Adv. Funct. Mater. 26 6641Google Scholar

    [40]

    Lin Z M, Luo P Q, Zeng W, Lai H J, Xie W G, Deng W L, Luo Z 2020 Opt. Mater. 108 110191Google Scholar

    [41]

    Loutfy R O, Nag D S 1984 Solar Energy Mater. 11 319Google Scholar

    [42]

    Hossain M A, Jenning J R, Mathews N, Wang Q 2012 Phys. Chem. Chem. Phys. 14 7161Google Scholar

    [43]

    Garcia L V, Mendivil M I, Guillen G G, Martinez J A A, Krishnan B, Avellaneda D, Castillo G A, Das Roy T K, Shaji S 2015 Appl. Surf. Sci. 336 329Google Scholar

    [44]

    Deng J P, Li L, Gou Y C, Fang J F, Feng R, Lei Y L, Song X H, Yang Z 2020 Electrochimica Acta 356 136845Google Scholar

    [45]

    Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927Google Scholar

    [46]

    Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar

    [47]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar

    [48]

    Dong Y H, Xu L M, Zhao Y L, Wang S L, Song J Z, Zou Y S, Zeng H B 2021 Adv. Mater. Interfaces 8 2002053Google Scholar

    [49]

    Liu F C, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I, Tanigaki K 2014 Acs Nano 8 752Google Scholar

    [50]

    Xia J, Zhao Y X, Wang L, Li X Z, Gu Y Y, Cheng H Q, Meng X M 2017 Nanoscale 9 13786Google Scholar

    [51]

    An Q W, Meng X Q, Xiong K, Qiu Y L, Lin W H 2017 J. Alloy. Compd. 726 214Google Scholar

    [52]

    Jin B, Huang P, Zhang Q, Zhou X, Zhang X W, Li L, Su J W, Li H Q, Zhai T Y 2018 Adv. Funct. Mater. 28 1800181Google Scholar

    [53]

    Ye Y, Gan L, Dai L, Dai Y, Guo X F, Meng H, Yu B, Shi Z J, Shang K P, Qin G G 2011 Nanoscale 3 1477Google Scholar

    [54]

    Di T, Cheng B, Ho W, Yu J, Tang H 2019 Appl. Surf. Sci. 470 196Google Scholar

    [55]

    Avanesian T, Christopher P 2014 J. Phys. Chem. C 118 28017Google Scholar

    [56]

    Boerigter C, Aslam U, Linic S 2016 Acs Nano 10 6108Google Scholar

    [57]

    Wang H L, Wang F, Xu T F, Xia H, Xie R Z, Zhou X H, Ge X, Liu W W, Zhu Y C, Sun L X, Guo J X, Ye J F, Zubair M, Luo M, Yu C H, Sun D Y, Li T X, Zhuang Q D, Fu L, Hu W D, Lu W 2021 Nano Lett. 21 7761Google Scholar

    [58]

    Kumar A, Husale S, Srivastava A K, Dutta P K, Dhar A 2014 Nanoscale 6 8192Google Scholar

    [59]

    Sharma A, Kumar R, Bhattacharyya B, Husale S 2016 Sci. Rep-Uk. 6 22939Google Scholar

    [60]

    李含春 2018 硕士学位论文 (昆明: 云南师范大学)

    Li H C 2018 M. S. Dissertation (Kunming: Yunnan Normal University) (in Chinese)

    [61]

    Zhang K, Luo T, Chen H R, Lou Z, Shen G Z 2017 J. Mater. Chem. C 5 3330Google Scholar

  • [1] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器.  , 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [2] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器.  , 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器.  , 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] 朱文慧, 冯磊, 张克雄, 朱俊. Al纳米孔阵列/(AlxGa1–x)2O3薄膜中的紫外波段超常透射.  , 2024, 73(20): 207801. doi: 10.7498/aps.73.20240928
    [5] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器.  , 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [6] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能.  , 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [7] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展.  , 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [8] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [9] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器.  , 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [10] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器.  , 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [11] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器.  , 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [12] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器.  , 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [13] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管.  , 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [14] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [15] 洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁. 芯帽纳米颗粒的光热性质.  , 2018, 67(19): 195202. doi: 10.7498/aps.67.20180909
    [16] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器.  , 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [17] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究.  , 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [18] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究.  , 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [19] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究.  , 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [20] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应.  , 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
计量
  • 文章访问数:  3855
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2023-02-14
  • 上网日期:  2023-03-16
  • 刊出日期:  2023-05-05

/

返回文章
返回
Baidu
map