Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of single-particle transients in low-noise amplifiers based on silicon-germanium heterojunction bipolar transistors and inverse-mode structures

Huang Xin-Yu Zhang Jin-Xin Wang Xin Lü Ling Guo Hong-Xia Feng Juan Yan Yun-Yi Wang Hui Qi Jun-Xiang

Citation:

Numerical simulation of single-particle transients in low-noise amplifiers based on silicon-germanium heterojunction bipolar transistors and inverse-mode structures

Huang Xin-Yu, Zhang Jin-Xin, Wang Xin, Lü Ling, Guo Hong-Xia, Feng Juan, Yan Yun-Yi, Wang Hui, Qi Jun-Xiang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this work, TCAD simulation modeling is carried out for silicon-germanium heterojunction bipolar transistor (SiGe HBT), and an X-band low noise amplifier (LNA) circuit is built based on the SiGe HBT device model to carry out the hybrid simulation of single-particle transient (SET). The rule of SET pulse varying with LET value and incident angle of ions is studied, and the results show that with the increase of incident LET value, the amplitude of SET pulse at the LNA port increases, and the oscillation time is prolonged; with the increase of incident angle of ions, the amplitude of SET pulse at the LNA port first increases and then decreases, and the oscillation time decreases. With the development of the characterization process, the cutoff frequency (fT) and the maximum oscillation frequency (fMAX) of SiGe HBT device with IM structure, are measured considering the use of inverse-mode (IM) common emitter and common-base structures (Cascode) to reduce the sensitivity of the LNAs to single-particle effects. This work calibrates the devices of the TCAD platform as well as the devices of the ADS platform, establishes F-F LNAs as well as I-F LNAs on the ADS, respectively, and verifies the relevant RF performances of the LNA circuits by using the IM-structured SiGe HBTs as the core devices. The SET experiments are performed on the Sentaurus TCAD platform for the F-F LNA circuit and I-F LNA circuit for ions incident on two positions: common base transistor and common emitter transistor, respectively. It is concluded that the LNA with IM structure still shows good RF performance compared with the standard LNA at 130 nm. The transient current duration of the LNA circuit with IM Cascode structure is significantly reduced, and the peak value is reduced by 66% or more, which significantly reduces the sensitivity of the SiGe LNA circuit to SET.
      Corresponding author: Zhang Jin-Xin, jxzhang@xidian.edu.cn
    [1]

    辛启明, 刘英坤, 贾素梅 2011 半导体技术 36 672Google Scholar

    Xin Q M, Liu Y Q, Jia S M 2011 Semicond. Technol. 36 672Google Scholar

    [2]

    Meyerson B S 1986 Appl. Phys. Lett. 48 797Google Scholar

    [3]

    马良 2019 中国新通信 21 222Google Scholar

    Man L 2019 Chin. New Telecommun. 21 222Google Scholar

    [4]

    谢孟贤, 古妮娜 2008 微电子学 38 34

    Xie M X, Gu N N 2008 Microelectronics 38 34

    [5]

    Çaışkan C, Kalyoncu I, Yazici M, Gurbuz Y 2018 IEEE Trans. Circuits Syst. Regul. Pap. 66 1419Google Scholar

    [6]

    包宽, 周骏, 沈亚 2017 固体电子学研究与进展 37 239

    Bao K, Zhou J, Shen Y 2017 Solid State Electron. Res. Prog. 37 239

    [7]

    李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 64 118502Google Scholar

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar

    [8]

    Appaswamy A 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology

    [9]

    Sheng L, Yong-Bin K, Fabrizio L 2011 IEEE Trans. Device Mater. Reliab. 12 68Google Scholar

    [10]

    Jung S, Lourenco N E, Song I, Oakley M A, England T D, Arora R, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3193Google Scholar

    [11]

    Al Seragi E M, Dash S, Muthuseenu K, Cressler J D, Barnaby H J, Khachatrian A, Buchner S P, McMorrow D, Zeinolabedinzadeh S 2021 IEEE Trans. Nucl. Sci. 69 2154Google Scholar

    [12]

    Li P, He C H, Guo H X, Zhang J X, Li Y, Wei J 2019 Microelectron. Reliab. 103 113499Google Scholar

    [13]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar

    [14]

    Jin D Y, Wu L, Zhang W R, Na W C, Yang S M, Jia X X, Yang Y Q 2022 J. Beijing Univ. Technol. 48 1280Google Scholar

    [15]

    Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y, Wu X X 2018 Chin. Phys. B 27 108501Google Scholar

    [16]

    张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 71 058502Google Scholar

    Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar

    [17]

    Lourenco N E, Zeinolabedinzadeh S, Ildefonso A, Fleetwood Z E, Coen C T, Song I, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 273Google Scholar

    [18]

    Chen W, Pouget V, Barnaby H J, Cressler J D, Niu G, Fouillat P, Lewis D 2003 IEEE Trans. Nucl. Sci. 50 2081Google Scholar

    [19]

    Zeinolabedinzadeh S, Ying H, Fleetwood Z E, Roche N J H, Khachatrian A, McMorrow D, Cressler J D 2016 IEEE Trans. Nucl. Sci. 64 125Google Scholar

    [20]

    Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar

    [21]

    Phillips S D, Moen K A, Lourenco N E, Cressler J D 2012 IEEE Trans. Nucl. Sci. 59 2682Google Scholar

    [22]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [23]

    Najafizadeh L, Phillips S D, Moen K A, Diestelhorst R M, Bellini M, Saha P K, Marshall P W 2009 IEEE Trans. Nucl. Sci. 56 3469Google Scholar

    [24]

    Ildefonso A, Coen C T, Fleetwood Z E, Tzintzarov G N, Wachter M T, Khachatrian A, Cressler J D 2017 IEEE Trans. Nucl. Sci. 65 239Google Scholar

    [25]

    Song I, Raghunathan U S, Lourenco N E, Fleetwood Z E, Oakley M A, Jung S, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 1099Google Scholar

  • 图 1  二维器件模型示意图 (a) 二维器件模型图; (b) Ge组分随着纵轴坐标变化示意图

    Figure 1.  Schematic of two-dimensional (2D) device model: (a) 2D Device model diagram; (b) schematic diagram of the variation of the Ge component with the coordinate of the vertical axis.

    图 2  低噪放大器电路图

    Figure 2.  Low noise amplifier circuit diagram.

    图 3  离子入射轨迹仿真图

    Figure 3.  Simulation of ion incidence trajectory.

    图 4  不同LET值的LNA输出端口瞬态电流对比图

    Figure 4.  Comparison of transient currents at LNA output ports for different LET values.

    图 6  不同LET值的重离子入射CB晶体管时, CE的SET电流仿真图

    Figure 6.  Simulation of SET current of CE when the heavy ions with different LET values incident on CB transistor.

    图 5  不同LET值的重离子入射CB晶体管时, CB的SET电流仿真图

    Figure 5.  Simulation of the SET current of the CB when the heavy ions with different LET values incident on the CB transistor.

    图 7  离子入射角度示意图

    Figure 7.  Schematic diagram of the angle of incidence of ions.

    图 8  不同入射角度的LNA输出端口瞬态电流对比图

    Figure 8.  Comparison of transient currents at the output ports of LNAs with different incidence angles.

    图 10  不同角度的重离子入射CB晶体管时, CE的SET电流仿真图

    Figure 10.  Simulation of the SET current of CE when heavy ions are incident on the CB transistor at different angles.

    图 9  不同角度的重离子入射CB晶体管时, CB的SET电流仿真图

    Figure 9.  Simulation of the SET current of the CB when heavy ions are incident on the CB transistor at different angles.

    图 11  IM-SiGe fT与IC之间的关系

    Figure 11.  Relationship between fT and IC of IM-SiGe.

    图 12  IM-SiGe fMAX与IC之间的关系

    Figure 12.  Relationship between fMAX and IC of IM-SiGe.

    图 13  Cascode配置的F-F与I-F结构示意图

    Figure 13.  Schematic diagram of F-F and I-F structures with Cascode configurations.

    图 14  SiGe HBT器件的S参数Smith图 (a) S11 (红色)/S22 (蓝色); (b) S12 (红色)/S21 (蓝色)

    Figure 14.  Smith chart of S-parameters of SiGe HBT devices: (a) S11 (red)/S22 (blue); (b) S12 (red)/S21 (blue).

    图 15  ADS SiGe HBT器件的S参数Smith图 (a) S11 (红色)/S22 (蓝色); (b) S12 (红色)/S21 (蓝色)

    Figure 15.  S-parameter Smith chart of ADS SiGe HBT device: (a) S11 (red)/S22 (blue); (b) S12 (red)/S21 (blue)

    图 16  SiGe HBT器件的S参数扫描图 (a) S11; (b) S22; (c) S21

    Figure 16.  S-parameter scan of SiGe HBT device: (a) S11; (b) S22; (c) S21.

    图 17  SiGe HBT TCAD与ADS器件的S参数对比图(Vce = 1 V, Vbe = 0.5 V) (a) S11; (b) S22; (c) S12/S21

    Figure 17.  S-parameter comparison of SiGe HBT TCAD and ADS devices biased at 0.5 V (Vce = 1 V, Vbe = 0.5 V): (a) S11; (b) S22; (c) S12/S21.

    图 18  传统模式下LNA的S参数图

    Figure 18.  S-parameter plot of LNA in forward mode.

    图 19  中心频率为9.5 GHz的I-F结构以及F-F结构的LNA电路S参数图对比 (a) S11; (b) S12; (c) S21; (d) S22

    Figure 19.  Comparison of S-parameter plots of LNA circuits with I-F structure and F-F structure at a center frequency of 9.5 GHZ: (a) S11; (b) S12; (c) S21; (d) S22.

    图 20  I-F结构以及F-F结构的LNA电路NF对比图

    Figure 20.  NF comparison of LNA circuits with I-F structure as well as F-F structure.

    图 21  F-F LNA以及I-F LNA电路中对CB与CE的晶体管进行重离子入射示意图 (a) 重离子入射CB; (b) 重离子入射CE

    Figure 21.  Schematic of heavy-ion incidence on the transistors of CB and CE in F-F LNA as well as I-F LNA circuits: (a) Heavy ion incident CB; (b) heavy ion incident CE.

    图 22  CB在离子入射条件下F-F和I-F共源共栅配置的SET模拟结果

    Figure 22.  CB SET simulation results for F-F and I-F common source and common gate configurations under ion incidence conditions.

    图 23  CE在离子入射条件下F-F和I-F共源共栅配置的SET模拟结果

    Figure 23.  CE SET simulation results for F-F and I-F common source and common gate configurations under ion incidence conditions.

    表 1  LNA核心参数

    Table 1.  LNA core parameters.

    LNA核心参数 I-F Cascode F-F Cascode
    f0/GHz 9.5 9.5
    S21/dB 20 23
    NF/dB 2.9 1.4
    P1dB/dBm –18 –22
    DownLoad: CSV
    Baidu
  • [1]

    辛启明, 刘英坤, 贾素梅 2011 半导体技术 36 672Google Scholar

    Xin Q M, Liu Y Q, Jia S M 2011 Semicond. Technol. 36 672Google Scholar

    [2]

    Meyerson B S 1986 Appl. Phys. Lett. 48 797Google Scholar

    [3]

    马良 2019 中国新通信 21 222Google Scholar

    Man L 2019 Chin. New Telecommun. 21 222Google Scholar

    [4]

    谢孟贤, 古妮娜 2008 微电子学 38 34

    Xie M X, Gu N N 2008 Microelectronics 38 34

    [5]

    Çaışkan C, Kalyoncu I, Yazici M, Gurbuz Y 2018 IEEE Trans. Circuits Syst. Regul. Pap. 66 1419Google Scholar

    [6]

    包宽, 周骏, 沈亚 2017 固体电子学研究与进展 37 239

    Bao K, Zhou J, Shen Y 2017 Solid State Electron. Res. Prog. 37 239

    [7]

    李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 64 118502Google Scholar

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502Google Scholar

    [8]

    Appaswamy A 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology

    [9]

    Sheng L, Yong-Bin K, Fabrizio L 2011 IEEE Trans. Device Mater. Reliab. 12 68Google Scholar

    [10]

    Jung S, Lourenco N E, Song I, Oakley M A, England T D, Arora R, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3193Google Scholar

    [11]

    Al Seragi E M, Dash S, Muthuseenu K, Cressler J D, Barnaby H J, Khachatrian A, Buchner S P, McMorrow D, Zeinolabedinzadeh S 2021 IEEE Trans. Nucl. Sci. 69 2154Google Scholar

    [12]

    Li P, He C H, Guo H X, Zhang J X, Li Y, Wei J 2019 Microelectron. Reliab. 103 113499Google Scholar

    [13]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar

    [14]

    Jin D Y, Wu L, Zhang W R, Na W C, Yang S M, Jia X X, Yang Y Q 2022 J. Beijing Univ. Technol. 48 1280Google Scholar

    [15]

    Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y, Wu X X 2018 Chin. Phys. B 27 108501Google Scholar

    [16]

    张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 71 058502Google Scholar

    Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar

    [17]

    Lourenco N E, Zeinolabedinzadeh S, Ildefonso A, Fleetwood Z E, Coen C T, Song I, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 273Google Scholar

    [18]

    Chen W, Pouget V, Barnaby H J, Cressler J D, Niu G, Fouillat P, Lewis D 2003 IEEE Trans. Nucl. Sci. 50 2081Google Scholar

    [19]

    Zeinolabedinzadeh S, Ying H, Fleetwood Z E, Roche N J H, Khachatrian A, McMorrow D, Cressler J D 2016 IEEE Trans. Nucl. Sci. 64 125Google Scholar

    [20]

    Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar

    [21]

    Phillips S D, Moen K A, Lourenco N E, Cressler J D 2012 IEEE Trans. Nucl. Sci. 59 2682Google Scholar

    [22]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [23]

    Najafizadeh L, Phillips S D, Moen K A, Diestelhorst R M, Bellini M, Saha P K, Marshall P W 2009 IEEE Trans. Nucl. Sci. 56 3469Google Scholar

    [24]

    Ildefonso A, Coen C T, Fleetwood Z E, Tzintzarov G N, Wachter M T, Khachatrian A, Cressler J D 2017 IEEE Trans. Nucl. Sci. 65 239Google Scholar

    [25]

    Song I, Raghunathan U S, Lourenco N E, Fleetwood Z E, Oakley M A, Jung S, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 1099Google Scholar

  • [1] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [2] Yang Wei-Tao, Hu Zhi-Liang, He Huan, Mo Li-Hua, Zhao Xiao-Hong, Song Wu-Qing, Yi Tian-Cheng, Liang Tian-Jiao, He Chao-Hui, Li Yong-Hong, Wang Bin, Wu Long-Sheng, Liu Huan, Shi Guang. Neutron induced single event effects on near-memory computing architecture AI chips. Acta Physica Sinica, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [3] Ju An-An, Guo Hong-Xia, Zhang Feng-Qi, Liu Ye, Zhong Xiang-Li, Ouyang Xiao-Ping, Ding Li-Li, Lu Chao, Zhang Hong, Feng Ya-Hui. Simulation research on single event effect of N-well resistor. Acta Physica Sinica, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [4] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [5] Shen Rui-Xiang, Zhang Hong, Song Hong-Jia, Hou Peng-Fei, Li Bo, Liao Min, Guo Hong-Xia, Wang Jin-Bin, Zhong Xiang-Li. Numerical simulation of single-event effects in fully-depleted silicon-on-insulator HfO2-based ferroelectric field-effect transistor memory cell. Acta Physica Sinica, 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [6] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [7] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [8] Han Jin-Hua, Qin Ying-Can, Guo Gang, Zhang Yan-Wen. A method of designing binary energy degrader. Acta Physica Sinica, 2020, 69(3): 033401. doi: 10.7498/aps.69.20191514
    [9] Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen. Design of 100-MeV proton beam spreading scheme with double-ring double scattering method. Acta Physica Sinica, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [10] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [11] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [12] Li Pei, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Wang Xin, Zhang Jin-Xin. Simulation and sesign of single event effect radiation hardening for SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [13] Xiao Yao, Guo Hong-Xia, Zhang Feng-Qi, Zhao Wen, Wang Yan-Ping, Ding Li-Li, Fan Xue, Luo Yin-Hong, Zhang Ke-Ying. Synergistic effects of total ionizing dose on the single event effect sensitivity of static random access memory. Acta Physica Sinica, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [14] Zhang Jin-Xin, He Chao-Hui, Guo Hong-Xia, Tang Du, Xiong Cen, Li Pei, Wang Xin. Three-dimensional simulation study of bias effect on single event effects of SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [15] Sun Ya-Bin, Fu Jun, Xu Jun, Wang Yu-Dong, Zhou Wei, Zhang Wei, Cui Jie, Li Gao-Qing, Liu Zhi-Hong. Study on ionization damage of silicon-germanium heterojunction bipolar transistors at various dose rates. Acta Physica Sinica, 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [16] Zhang Jin-Xin, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Xi Shan-Bin, Wang Xin, Deng Wei. 3D simulation of heavy ion induced charge collection of single event effects in SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [17] Liu Bi-Wei, Chen Jian-Jun, Chen Shu-Ming, Chi Ya-Qin. NPN bipolar effect and its influence on charge sharing in a tripe well CMOS technology with n+ deep well. Acta Physica Sinica, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [18] Liu Fan-Yu, Liu Heng-Zhu, Liu Bi-Wei, Liang Bin, Chen Jian-Jun. Effect of doping concentration in p+ deep well on charge sharing in 90nm CMOS technology. Acta Physica Sinica, 2011, 60(4): 046106. doi: 10.7498/aps.60.046106
    [19] Cai Ming-Hui, Han Jian-Wei, Li Xiao-Yin, Li Hong-Wei, Zhang Zhen-Li. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [20] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Experimental study on irradiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
Metrics
  • Abstract views:  2143
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  29 February 2024
  • Accepted Date:  19 April 2024
  • Available Online:  28 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回
Baidu
map